Either a point or the y-intercept.If the y-intercept is known (call it b), and, calling the slope m, the equation is y = mx + b.If a sample point (x0, y0) is known, then the equation is y - y0 = m(x - x0).
The fourth quadrant
linear (A+)
Quadrant I ( + , + ) Quadrant II ( - , + ) Quadrant III ( - , - ) Quadrant IV ( + , - )
The value of x will be negative in the bottom left quadrant (quadrant 3) and the top left quadrant (quadrant 2).
A circle with centre (x0, y0) and radius r has the equation of:(x -x0)² + (y - y0)² = r²By writing the equation of any circle in this form its centre and radius can be determined.To completely lie within a quadrant, the centre of the circle must be more than r away from the y- and x-axes:In the first quadrant if: x0 > r and y0 > rIn the second quadrant if: x0 < -r and y0 > rIn the third quadrant if: x0 < -r and y0 < -rIn the fourth quadrant if: x0 > r and y0 < -rIf either x0 or y0 (or both) is exactly r away from the y- or x-axis then the circle is on boundary between quadrants, and if either x0 or y0 (or both) is less than r away from the y- or x-axis, then the circle is in more than one boundary.f x0 < r from the y-axis then the circle is in quadrants I and II, or y0 < r from the x-axis then the circle is in quadrants III and IV; if both less than r away from their respective axes, the the circle is in all four quadrants.
The general equation for a linear approximation is f(x) ≈ f(x0) + f'(x0)(x-x0) where f(x0) is the value of the function at x0 and f'(x0) is the derivative at x0. This describes a tangent line used to approximate the function. In higher order functions, the same concept can be applied. f(x,y) ≈ f(x0,y0) + fx(x0,y0)(x-x0) + fy(x0,y0)(y-y0) where f(x0,y0) is the value of the function at (x0,y0), fx(x0,y0) is the partial derivative with respect to x at (x0,y0), and fy(x0,y0) is the partial derivative with respect to y at (x0,y0). This describes a tangent plane used to approximate a surface.
That would besqrt[ (x80 - x0)2 + (y80 - y0)2 ) at an angle of tan-1 (y80 - y0) / (x80 - x0)or(x80 - x0) i + (y80 - y0) j
The equation of a sphere with radius r, centered at (x0 ,y0 ,z0 ) is (x-x0 )+(y-y0 )+(z-z0 )=r2
Use Pythagoras: For a line joining two points (x0, y0) to (x1, y1) there is a right angle triangle: One side (leg) joins (x0, y0) to (x1, y0) with length (x1 - x0) One side (leg) joins (x1, y0) to (x1, y1) with length (y1 - y0) The hypotenuse joins (x0, y0) to (x1, y1) → length hypotenuse = √((x1 - x0)² + (y1 - y0)²) → length between (0, 0) and (-15, 8) is given by: distance = √((-15 - 0)² + (8 - 0)²) = √((-15)² + (8)²) = √(225 + 64) = √289 = 17 units
Assuming you want the equation of the straight line between the two points (x0, y0) and (x1, y1), the equation is: y - y0 = m(x - x0) where m is the gradient between the two points: m = (y1 - y0) ÷ (x1 - x0) Note: if the two x coordinates are equal, that is x0 = x1, then the equation of the line is x = x0.
The gradient m between two points (x0, y0) and (x1, y1) is given by m = change_in_y/change_in_x = (y1 - y0)/(x1 - x0) Equation of a line through a point (x0, y0) with gradient m is given by: y - y0 = m(x - x0) Thus for the points (16, -5) and (-40, 16): m = (16 - -5) / (-40 - 16) = 21/-56 = -3/8 y - -5 = -3/8(x - 16) → 8y + 40 = -3x +48 → 8y + 3x = 8
To find the distance between any two points on the Cartesian plane use Pythagoras: The distance between (x0, y0) and (x1, y1) is given by: distance = √((x1 - x0)² + (y1 - y0)²) → distance between (28, -17) and (-15, -17) is: distance = √((x1 - x0)² + (y1 - y0)²) = √((-15 - 28)² + (-17 - -17)²) = √((-43)² + (0)) = √1849 = 43 ------------------------ In this case, the y-coordinates are the same (y0 = y1 = -17), so this becomes: distance = √((x1 - x0)² + (y0 - y0)²) = √((x1 - x0)² + 0²) = √((x1 - x0)²) = |x1 - x0| The vertical bars around the expression mean the absolute value of the expression, which is the numerical value of the expression ignoring the sign. distance = |x1 - x0| = |-15 - 28| = |-43| = 43.
x0 and y0 aren't lines. Do you mean x=0 and y=0? If so, they are the y axis and the x axis, respectively, and the answer is 90 degrees as noted above.
You use the first HS with entries of x0 and y0 . then you get D0=X0 XOR Y0 and B0=X0 NOT*Y0.(*=AND) Then you use the sacond HS with entries of D0(from the first HS) and B-1(borrow from the previous level). then you get D1=X0 XOR Y0 XOR B-1(exactly like D in FS) and B1=D0 NOT*B-1. Then you use the OR gate with entries B0(from the first HS) and B1(from the second HS) and you get B=B0 OR B-1 AND D0 NOT. If you check the options you can get their similar to the borrow of FS
between points (x0, y0) and (x1, y1): slope = change_in_y/change_in_x → slope = (y1 - y0)/(x1 - x0) → slope = (3 - 0)/(1 - 2) = 3/(-1) = -3
If you're wondering about the "Bresenham line algorithm", it is an algorithm (a process used for making a desired result) that plots a geometrical line (consiting of infinate points, as if you draw a straight line on a piece of paper) and translates it to a computer screen (composed of pixels, or video "points" that have a specific amount of sized points) The algorithm is as follows: function line(x0, x1, y0, y1)boolean steep := abs(y1 - y0) > abs(x1 - x0)if steep thenswap(x0, y0)swap(x1, y1)if x0 > x1 thenswap(x0, x1)swap(y0, y1)int deltax := x1 - x0int deltay := abs(y1 - y0)int error := -(deltax + 1) / 2int ystepint y := y0if y0 < y1 then ystep := 1 else ystep := -1for x from x0 to x1if steep then plot(y,x) else plot(x,y)error := error + deltayif error ≥ 0 theny := y + ysteperror := error - deltax This algorithm was taken from the site http://en.wikipedia.org/wiki/Bresenham's_line_algorithm