x0 and y0 aren't lines. Do you mean x=0 and y=0? If so, they are the y axis and the x axis, respectively, and the answer is 90 degrees as noted above.
Chat with our AI personalities
That would besqrt[ (x80 - x0)2 + (y80 - y0)2 ) at an angle of tan-1 (y80 - y0) / (x80 - x0)or(x80 - x0) i + (y80 - y0) j
Use Pythagoras: For a line joining two points (x0, y0) to (x1, y1) there is a right angle triangle: One side (leg) joins (x0, y0) to (x1, y0) with length (x1 - x0) One side (leg) joins (x1, y0) to (x1, y1) with length (y1 - y0) The hypotenuse joins (x0, y0) to (x1, y1) → length hypotenuse = √((x1 - x0)² + (y1 - y0)²) → length between (0, 0) and (-15, 8) is given by: distance = √((-15 - 0)² + (8 - 0)²) = √((-15)² + (8)²) = √(225 + 64) = √289 = 17 units
Use Pythagoras to find the distance between two points (x0,.y0) and (x1, y1): distance = √(change_in_x² + change_in_y²) → distance = √((x1 - x0)² + (y1 - y0)²) → distance = √((4 - 1)² + (-1 -2)²) → distance = √(3² + (-2)²) → distance = √(9 + 9) → distance = √18 = 3 √2
x0 = 1 because any number raised to the power of 0 is always equal to 1
The integral of e-2x is -1/2*e-2x + c but I am not sure what "for x0" in the question means.