When the matrix of coefficients is singular.
Chat with our AI personalities
A system of linear equations is two or more simultaneous linear equations. In mathematics, a system of linear equations (or linear system) is a collection of linear equations involving the same set of variables.
Inconsistent.
A "system" of equations is a set or collection of equations that you deal with all together at once. Linear equations (ones that graph as straight lines) are simpler than non-linear equations, and the simplest linear system is one with two equations and two variables.
The terms consistent and dependent are two ways to describe a system of linear equations. A system of linear equations is dependent if you can algebraically derive one of the equations from one or more of the other equations. A system of linear equations is consistent if they have a common solution.An example of a dependent system of linear equations:2x + 4y = 84x + 8y = 16Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 16, which gives 16 = 16.No new information was gained from the second equation, because we already knew 16 = 16, so these two equations are dependent.An example of an inconsistent system of linear equations:Because consistency is boring.2x + 4y = 84x + 8y = 15Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 15, which gives 16 = 15.This is a contradiction, because 16 doesn't equal 15. Therefore this system has no solution and is inconsistent.
The pair of equations: x + y = 1 and x + y = 3 have no solution. If any ordered pair (x,y) satisfies the first equation it cannot satisfy the second, and conversely. The two equations are said to be inconsistent.