It depends on the equations.
If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.
This is a linear algebra question and it is incomplete since there are no equation which have to be solved.
the equation graphs
A linear equation in n variables, x1, x2, ..., xn is an equation of the forma1x1 + a2x2 + ... + anxn = y where the ai are constants.A system of linear equations is a set of m linear equations in n unknown variables. There need not be any relationship between m and n. The system may have none, one or many solutions.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
It depends on the equations.
If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.
An inconsistent equation (or system of equations) is one that has no possible solutions. That is precisely why we call it inconsistent; there is no solution set that can be substituted for its variable or variables that will make the equation (or system) true.
When the matrix of coefficients is singular.
A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.
The terms consistent and dependent are two ways to describe a system of linear equations. A system of linear equations is dependent if you can algebraically derive one of the equations from one or more of the other equations. A system of linear equations is consistent if they have a common solution.An example of a dependent system of linear equations:2x + 4y = 84x + 8y = 16Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 16, which gives 16 = 16.No new information was gained from the second equation, because we already knew 16 = 16, so these two equations are dependent.An example of an inconsistent system of linear equations:Because consistency is boring.2x + 4y = 84x + 8y = 15Solve the first equation for x:x = 4 - 2yPlug that value of x into the second equation:16 - 8y + 8y = 15, which gives 16 = 15.This is a contradiction, because 16 doesn't equal 15. Therefore this system has no solution and is inconsistent.
Independence:The equations of a linear system are independent if none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.
Independence:The equations of a linear system are independentif none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.
No....not necessary
A set of equations is inconsistent, if its solution set is empty.
If they are inconsistent and you try to solve them you will get something like: 5=0, which of course isn't true so... you can't solve them