right
If the number in front of the x squared is negative, then the parabola will open upwards. The opposite occurs when the number is positive.
open upward
Down
Downwards
The standard form of quadratic function is: f(x) = a(x - h)^2 + k, a is different than 0 The graph of f is a parabola whose vertex it is the point (h, k). If a > 0, the parabola opens upward; if a < 0, the parabola opens downward. Furthermore, if |a| is small, the parabola opens more flatly than if |a| is large. It is a general procedure for graphing parabolas whose equations are in standard form: Example 1: Graph the the quadratic function f(x) = -2(x - 3)^2 + 8 Solution: Standard form: f(x) = a(x - h)^2 + k Given function: f(x) = -2(x - 3) + 8 From the give function we have: a= -2; h= 3; k = 8 Step 1. Determine how the parabola opens. Note that a = -2. Since a < 0, the parabola is open downward. Step 2. Find the vertex. The vertex of parabola is at (h, k). because h = 3 and k = 8, the parabola has its vertex at (3, 8). Step 3. Find the x-intercepts by solving f(x) = 0. Replace f(x) with 0 at f(x) = -2(x - 3)^2 + 8 and solve for x 0 = -2(x - 3)^2 + 8 2(x - 3)^2 = 8 (x- 3)^2 = 4 x - 3 = square radical 4 x - 3 = 2 or x -3 = -2 x = 5 or x = 1 The x- intercepts are 1 and 5. Thus the parabola passes through the points (1, 0) and (5, 0), this means that parabola intercepts the x-axis at 1 and 5. Step 4. Find the y-intercept by computing f(0). Replace x with 0 in f(x) = _2(x - 3)^2 + 8 f(0) = -2(0 - 3)^2 + 8 f(0) = -2(9) + 8 f(0) = -10 The y-intercept is -10. Thus the parabola passes through the point (0, -10), this means that parabola intercepts the y-axis at -10. Step 5. Graph the parabola. With a vertex at (3, 8), x-intercepts at 1 and 5, and a y-intercept at -10. The axis of symmetry is the vertical line whose equation is x = 3. Example 2: Graphing a quadratic function in the form f(x) = ax^2 + bx + c Graph the quadratic function f(x) = -x^2 - 2x + 1 Solution: Here a = -1, b = -2, and c = 1 Step 1. Determine how the parabola opens. Since a = 1, a < 0, the parabola opens downward. Step 2. Find the vertex. We know that x-coordinate of the vertex is x = -b/2a. Substitute a with -1 and b with -2 into the equation for the x-coordinate: x = - b/2a x= -(-2)/(2)(-1) x = -1, so the x-coordinate of the vertex is -1, and the y-coordinate of the vertex will be f(-1). thus the vertex is at ( -1, f(-1) ) f(x) = -x^2 - 2x +1 f(-1) = -(-1)^2 - 2(-1) + 1 f(-1) = -1 + 2 + 1 f(-1) = 2 So the vertex of the parabola is (-1, 2) Step 3. Find the x-intercepts by solving f(x) = o f(x) = -x^2 -2x + 1 0 = -x^2- 2x + 1 We can't solve this equation by factoring, so we use the quadratic formula to solve it. we get to solution: One solution is x = -2.4 and the other solution is 0.4 (approximately). Thus the x-intercepts are approximately -2.4 and 0.4. The parabola passes through ( -2.4, 0) and (0.4, 0) Step 4. Find the y-intercept by computing f(0). f(x) = -x^2 - 2x + 1 f(0) = -(0)^2 - 2(0) + 1 f(0) = 1 The y-intercept is 1. The parabola passes through (0, 1). Step 5. graph the parabola with vertex at (-1, 2), x-intercepts approximately at -2.4 and 0.4, and y -intercept at 1. The line of symmetry is the vertical line with equation x= -1.
Nose points right, opens to the left.
positive.
Upwards like a letter U
It does both depending if it is positive or negative
When the coefficient of the y term ( a ) in the equation of a parabola is negative, the parabola opens downward. This means that its vertex is the highest point on the graph. Conversely, if ( a ) were positive, the parabola would open upward.
If the value of ( a ) in the equation ( y = ax^2 ) is positive, the parabola opens upwards. This means that the vertex of the parabola is the lowest point, and as you move away from the vertex in either direction along the x-axis, the value of ( y ) increases. Conversely, if ( a ) were negative, the parabola would open downwards.
right
If ( a ) is positive in the quadratic equation ( y = ax^2 + bx + c ), the parabola opens upward. This means that the vertex of the parabola is the lowest point on the graph, and as you move away from the vertex in either direction along the x-axis, the values of ( y ) increase. Conversely, if ( a ) were negative, the parabola would open downward.
If the number in front of the x squared is negative, then the parabola will open upwards. The opposite occurs when the number is positive.
It is like the letter U.
open upward
left