right
If the coefficient of x2 is positive then the parabola is cup shaped (happy face). If the coefficient of x2 is negative then the parabola is cap shaped (gloomy face).
The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.
down
In that case it opens upwards.
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
left
If the coefficient of x2 is positive then the parabola is cup shaped (happy face). If the coefficient of x2 is negative then the parabola is cap shaped (gloomy face).
The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.
down
In that case it opens upwards.
The standard form of the equation of a parabola that opens up or down is given by ( y = a(x - h)^2 + k ), where ( (h, k) ) is the vertex of the parabola and ( a ) determines the direction and width of the parabola. If ( a > 0 ), the parabola opens upward, while if ( a < 0 ), it opens downward. The vertex form emphasizes the vertex's position and the effect of the coefficient ( a ) on the parabola's shape.
the standard form of the equation of a parabola is x=y2+10y+22
There are two standard form of parabola: y2 = 4ax & x2 = 4ay, where a is a real number.
This is called the 'standard form' for the equation of a parabola:y =a (x-h)2+vDepending on whether the constant a is positive or negative, the parabola will open up or down.
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
To convert the vertex form of a parabola, which is typically expressed as (y = a(x-h)^2 + k), into standard form (y = ax^2 + bx + c), you need to expand the equation. Start by squaring the binomial ((x-h)), which gives (x^2 - 2hx + h^2). Then, distribute the coefficient (a) and combine like terms to achieve the standard form. The resulting equation will be (y = ax^2 - 2ahx + (ah^2 + k)).
There is no such thing as a standard equation. Furthermore, there are standard forms - all different - for the equation of a line, a circle, a plane, a parabola, an ellipse and so on. the question needs to be more specific.