answersLogoWhite

0

no it won't

In fact a function can NEVER be vertical. Not only that, it cannot loop back so that two (or more) points are above one another. For a function, there can be at most one y-value for any x-value so any vertical line will intersect the function at most once.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine

Add your answer:

Earn +20 pts
Q: Will a function always be a vertical line?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

A function will always be a vertical line?

A function can never be a vertical line, because it then fails the definition of a function: every x value outputs only 1 y value. The vertical line test will determine if a relation is a function. If a vertical line intersects the graph of the function at more than one place, it is not a function.


What do you call a function whose graph is a non-vertical line?

It is a function. If the graph contains at least two points on the same vertical line, then it is not a function. This is called the vertical line test.


Can a one to one function not be a function?

"y = f(x) is a function if it passes the vertical line test. It is a 1-1 function if it passes both the vertical line test and the horizontal line test. " - In order to be a one-to-one function, it first has to BE a function and pass the vertical line test. For example, a relation on a graph like a circle that does not pass the vertical line test is not function nor one-to-one.


Does a sideways parabola represent a function?

No, it does not. You can tell if something is a function or not by using the vertical line test. If there is more than one point at any vertical line, it is not a function.


How do you use a vertical line test to determine if a graph represents a function?

A vertical test line is useful because, by definition, a function has one and only one result value for each input value. If you can find a vertical line that intersects the curve of the line, then it is not a function. A simple example is a circle.