Best Answer

As a result of the rule that you use the definition of the term - such as significant digits - when finding them for a number.

More answers

All non-zero digits are significant.

Q: 4.832 has 4 significant digits as a result of which rule?

Write your answer...

Submit

Still have questions?

Continue Learning about Basic Math

997. To test that 997 is prime, we only need to test values up [997^.5], so up to 31. Using divisibility rules, we can immediately eliminate several possible divisors. Rule for 7: If you have a number, separate the last digit from the proceeding ones. Subtract twice the last digit from the number created from slicing off the last part. if that's divisible by seven, the whole number is. For example, take 343. 34-2(3) is 28, which is divisible by 7, so 343 is divisible by 7 Rule for 3: sum of digits is divisible by 3. Rule for 2: last digit is divisible by 2. Rule for 2^n: last n digits form a number that is divisible by 2^n Rule for 5: last digit is 5 or 0. Rule for 11: Difference of alternating sums of the digits, 432113 is divisible by 11 because (4+2+1)-(3+1+3) is divisible by eleven. Rule for 9: sum of digits is divisible by 9. Trying 13, 17, 19, 23, and 29, we see these all fail. So 997 is indeed prime.

203 / 297 = 0.6835 = 68.35% or (taking into account the rule of significant figures) 68.4%

4, 8, 12, 16, 20, 24, 28, 32, and 36 are the first 9 multiples of 4.

You line the numbers up, one below the other, so that the decimal points are in the same column. You compare the digits in the leftmost column. If one of the digits is large than the other, then that number is bigger. If they are the same, then you move to the next column on the right and repeat the comparisons.There is, however, one exception to this rule. If any number ends with a recurring 9, that decimal number must be rounded (up) to the last digit before the 9s start. That is 3.564999... recurring should be written as 3.565 for the comparisons. This does not apply to any other digit that might recur.

Positive A simple rule to remember this is when multiplying two numbers with the same sign, the result is ALWAYS positive. When multiplying two numbers with different signs, the results is ALWAYS negative.

Related questions

The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.The general rule is that the final result should not be more accurate than the numbers used to obtain this final result. In the case of a multiplication or division, this means that the final result can't have more significant digits than the original numbers. One of the numbers has 4 significant figures, the other 3; therefore, the final result should be rounded to 3 significant figures. If more significant figures are quoted, a special note should be made that the last digits are uncertain.

= significant figures = and got For addition and subtraction, the result should have as many decimal places as the measured number with the smallest number of decimal places.

17.0303

There are five significant figures in the given value. It is according to the rule of significant figures which say that zeros right to the decimal point are significant and all non zero digits are significant So , all the digits in the given value are significant figures i.e 5 significant figures.

Add the digits together and if the result is divisible by 9, the original number is divisible by 9.

It's a number of digits which you have to take in count when you have to round a number (physical value such as speed, acceleration and so on). e.g. if you have the number 0.0000067 the signifigant figures are 67; zeros don't matter, unless they are between two actual numbers like in 405000 the signifigant figures are 405

3 significant figures.The rule is that the number of digits in your answer should not exceed the lowest number of digits of all the values used to derive the answer.

The significant figures are the first four non-zero digits - with the last of these adjusted if the following digit is 5 or more. [This is the crude school rule rather than the bias-free, IEEE approved rule.] So the answer is 2231000.

Sum the digits in blocks of three from right to left. If the result is divisible by 27, then the number is divisible by 27

Delete any leading zeros.If the number is an integer, delete any trailing zeros.Skip to rule 4.Skip to rule 5.Count the number of digits remaining.

If a metal's mass is 0.0256kg, what is the mass in grams?

The first rule is to count all the digits from the beginning of the number until the first uncertain digit. The second rule is to round the final answer to match the least precise measurement used in the calculation.