answersLogoWhite

0

Both imaginary and real numbers are infinite .

Answer:Any real number can be turned into an imaginary number by multiplying it by "i" ot "j" (the root of -1). Hence it would appear that the set of all real numbers would equal the set of all imaginary numbers. However 0 (zero) multiplied by anything still equals zero. This would mean that there is at least one number that cannot be converted to an imaginary number.
User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Basic Math

How and why are real numbers more difficult to represent and process than integers?

There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.


Who is the father of complex number?

The answer to this question is more like an opinion than a solid fact. Several different mathematicians have been attributed to contributions in imaginary and complex numbers, but the work of Leonhard Euler gave new meaning to how imaginary and complex numbers behave, and how they can be used to simplify the analysis of something very real: waves (especially electromagnetic waves).Euler's Formula: e^(i*Θ) = cos(Θ) + *sin (Θ)


True or false a composite number has more than two numbers?

If you mean factors then it is true because a composite number has more than two factors.


What are non-zero real numbers?

Non-Zero Real Numbers are infact complex conjugate numbers. They are negative prime numbers.


Why is there more composite numbers than prime numbers?

There are more composite numbers than prime numbers because most numbers have more factors than just 1 and a number itself.

Related Questions

What is 5i?

Welcome to the world of imaginary and complex numbers. i is defined to be a number such that i2 = -1. i is imaginary ( that is not real) 5i is i+i+i+i+i . There is no simpler form than 5i . Please see the attached link for more about imaginary numbers.


Why roman number is real number?

Roman numerals are used only for integers, which are real numbers. The Romans never used imaginary numbers, which are at a tremendously more advanced stage of mathematics than they ever reached.


What real number is less than -1?

Many options - e.g. -2"Real number" means all the numbers we know, including positive and negative numbers.The only numbers that are not included are "imaginary numbers" - numbers that have an imaginary part i (used only i physics or high mathematics).See real-number


Why complex numbers can not b compared?

I would say that complex numbers can be compared almost as easily as natural numbers.Complex numbers consist of a real part and an imaginary part.Often written a+bi - i being the imaginary unit.If 'b' in the above equation is zero, then bi = 0.Then we don't have a imaginary part and the number is real.If 8 is greater than 5, then we could say that 8+8i is greater than 5+5i for both the real and the imaginary part.


Can you take the log of an imaginary number?

Yes, you can take the logarithm of an imaginary number, but it's more complex than with real numbers. The logarithm of a complex number, including imaginary numbers, is defined using the polar form of the number. For an imaginary number like ( bi ) (where ( b ) is real), the logarithm can be expressed as ( \ln|b| + i\arg(b) ), where ( \arg(b) ) is the argument (angle) of the complex number in the complex plane. Thus, the result will also be a complex number.


How many more real numbers are there than natural numbers?

Since there is an infinite number of real numbers and an infinite number of natural numbers, there is not more of one kind than of another.


How are rational and irrational numbers similar?

Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)Both are part of the real numbers; both are infinite sets. (However, there are more irrational than rational numbers.)


What is imagenary?

That is most likely a mis-spelling of "imaginary", and means something that is imagined - usually it refers to something that is not real, that is, that doesn't really exist. However - and since you posted the question under math - the so-called imaginary numbers are not any less real than the so-called real numbers; the names are maintained for historical reasons.


What is a real root?

In the context of algebra, the term real root refers to the solution to an equation which consists of a real number rather than an imaginary or complex number (a complex number being a combination of real and imaginary numbers). You may recall that any given equation will have the same number of roots (or solutions) as the highest exponent in the equation, so that if you are dealing with x squared, you have two roots. Often there would be one real root and one imaginary root. In general, the real roots are more useful, although there are some circumstances in which imaginary or complex roots are also relevant to what you are doingl.


Is every real number rational?

No. The set of real numbers contains an infinitely more irrational numbers than rational numbers.


What are complex calculations?

This probably refers to how to handle computations with the set of Complex Numbers (which is a combination of the set of real numbers and imaginary numbers), rather than just complicatedcalculations, or calculations which are very involved and as-such appear very complex (which is a different thing than Complex Numbers).


Are there more real numbers than integers?

Yes, there are more real numbers than integers. The set of integers is countable, meaning its elements can be listed in a sequence. In contrast, the set of real numbers is uncountable; there are infinitely many real numbers between any two integers, as shown by Cantor's diagonal argument. Thus, the cardinality of the real numbers is strictly greater than that of the integers.