Both imaginary and real numbers are infinite .
Answer:Any real number can be turned into an imaginary number by multiplying it by "i" ot "j" (the root of -1). Hence it would appear that the set of all real numbers would equal the set of all imaginary numbers. However 0 (zero) multiplied by anything still equals zero. This would mean that there is at least one number that cannot be converted to an imaginary number.Chat with our AI personalities
There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.There are more real numbers than integers. The set of integers is countably infinite, of magnitude aleph-zero. The set of real numbers is uncountably infinite (specifically, aleph-one).A computer can't really represent real numbers (that would require an infinite amount of memory), rather, it uses an approximation.
The answer to this question is more like an opinion than a solid fact. Several different mathematicians have been attributed to contributions in imaginary and complex numbers, but the work of Leonhard Euler gave new meaning to how imaginary and complex numbers behave, and how they can be used to simplify the analysis of something very real: waves (especially electromagnetic waves).Euler's Formula: e^(i*Θ) = cos(Θ) + *sin (Θ)
If you mean factors then it is true because a composite number has more than two factors.
Non-Zero Real Numbers are infact complex conjugate numbers. They are negative prime numbers.
There are more composite numbers than prime numbers because most numbers have more factors than just 1 and a number itself.