You can compare their magnitude (absolute values) but not the numbers themselves.
Chat with our AI personalities
A "complex number" is a number of the form a+bi, where a and b are both real numbers and i is the principal square root of -1. Since b can be equal to 0, you see that the real numbers are a subset of the complex numbers. Similarly, since a can be zero, the imaginary numbers are a subset of the complex numbers. So let's take two complex numbers: a+bi and c+di (where a, b, c, and d are real). We add them together and we get: (a+c) + (b+d)i The sum of two real numbers is always real, so a+c is a real number and b+d is a real number, so the sum of two complex numbers is a complex number. What you may really be wondering is whether the sum of two non-real complex numbers can ever be a real number. The answer is yes: (3+2i) + (5-2i) = 8. In fact, the complex numbers form an algebraic field. The sum, difference, product, and quotient of any two complex numbers (except division by 0) is a complex number (keeping in mind the special case that both real and imaginary numbers are a subset of the complex numbers).
Complex math covers how to do operations on complex numbers. Complex numbers include real numbers, imaginary numbers, and the combination of real+imaginary numbers.
The set of complex numbers consists of real numbers and imaginary numbers (multiples of the square root of -1), and then a combination of the two sets of numbers. Complex numbers are often depicted graphically, with real numbers on the horizontal axis, and imaginary numbers on the vertical axis. See related link for more information.
You need two numbers to compare to have a gcf.
There are no two real numbers that do. Using complex numbers, these two do: (-3/2 + i√151/2) & (-3/2 - i√151/2) Two numbers that add to -3 and multiply to -40 are -8 & 5 Two numbers that add to 3 and multiply to -40 are 8 & -5 Two complex numbers that add to 3 and multiply to 40 are (3/2 + i√151/2) & (3/2 - i√151/2)