Wiki User
∙ 7y agoYes, the least common multiple of two numbers is always divisible by those numbers' greatest common factor.
Wiki User
∙ 7y agoNO. Odd numbers are not always divisible by 5. Examples: 3 , 7, 9, 11, 13, 17, ... are odd numbers and they are not divisible by 5.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
There cannot be any such thing as a "largest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
True
The answer is sometimes - when the multiple in question is 1.
Trees aren't necessary. The greatest common multiple of any set of numbers is always infinite.
Greatest common multiple of two prime numbers is always 1. Therefore, gcf of 11 and 17 is 1.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
Yes - if two numbers share no common factors (besides 1) the least common multiple will be the product of the numbers.
No, the sum of two consecutive numbers is always an odd number, and is not divisible by two.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
No, there is really no such thing as a "greatest common multiple". Once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
There is really no such thing as a "greatest common multiple". Once you find the least common multiple (LCM) of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
There are no such numbers because there is really no such thing as a "greatest common multiple". If the numbers have 5 as a common multiple then 10 will also be a common multiple and clearly, 10 is greater than 5. So 5 cannot be the greatest common multiple. In fact, once you find the least common multiple of a set of numbers, you can keep adding the LCM to itself over and over again. Each new number you get will be a common multiple of your set of numbers, but each new number will always be larger than the previous. This means that you can keep adding while the number approaches infinity and you will still never find a greatest multiple.
Yes, as long as the numbers are positive.