answersLogoWhite

0

707 is not a triangular number. The closest triangular numbers to 707 are 703 and 741.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: Is the number 707 a triangular number?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Basic Math

Is 707 a triangular number?

no


What is the fifth triangular number?

The fifth triangular number is 15


Is 55 a triangular number?

Yes, 55 is a triangular number.


How do you check if a number is a triangular number?

you need to use this formula: n(n+1) T=--------- 2 So number times (number + 1) divided by 2. If the number you get is the same number as n its a triangular number. if it isn't well it isn't a triangular number.


How do your use triangular numbers to make square numbers?

The sum of any two successive triangular number is a square number.The nth triangular number is n(n+1)/2 = (n2 +n)/2The next triangular number is (n+1)*(n+2)/2 = (n2 + 3n + 2)/2Their sum is (2n2 + 4n + 2)/2 = n2 + 2n + 1 = (n + 1)2This is easy to visualise. For example T3 + t4 = 42[T3, the 3th triangular number represented by X,t4, the 4th triangular number represented by x]XXX_____xXX_____xxX_____xxx_____xxxxBring them together and you have:XXXxXXxxXxxxxxxxThe sum of any two successive triangular number is a square number.The nth triangular number is n(n+1)/2 = (n2 +n)/2The next triangular number is (n+1)*(n+2)/2 = (n2 + 3n + 2)/2Their sum is (2n2 + 4n + 2)/2 = n2 + 2n + 1 = (n + 1)2This is easy to visualise. For example T3 + t4 = 42[T3, the 3th triangular number represented by X,t4, the 4th triangular number represented by x]XXX_____xXX_____xxX_____xxx_____xxxxBring them together and you have:XXXxXXxxXxxxxxxxThe sum of any two successive triangular number is a square number.The nth triangular number is n(n+1)/2 = (n2 +n)/2The next triangular number is (n+1)*(n+2)/2 = (n2 + 3n + 2)/2Their sum is (2n2 + 4n + 2)/2 = n2 + 2n + 1 = (n + 1)2This is easy to visualise. For example T3 + t4 = 42[T3, the 3th triangular number represented by X,t4, the 4th triangular number represented by x]XXX_____xXX_____xxX_____xxx_____xxxxBring them together and you have:XXXxXXxxXxxxxxxxThe sum of any two successive triangular number is a square number.The nth triangular number is n(n+1)/2 = (n2 +n)/2The next triangular number is (n+1)*(n+2)/2 = (n2 + 3n + 2)/2Their sum is (2n2 + 4n + 2)/2 = n2 + 2n + 1 = (n + 1)2This is easy to visualise. For example T3 + t4 = 42[T3, the 3th triangular number represented by X,t4, the 4th triangular number represented by x]XXX_____xXX_____xxX_____xxx_____xxxxBring them together and you have:XXXxXXxxXxxxxxxx