answersLogoWhite

0


Best Answer

You can, but the process is slightly complicated, because addition in the Complex field is like vector addition.

If z1 = (r1, a1), and If z2 = (r2, a2)

Then, if z = (r, a)

r = sqrt(r12 + r22)

and

a = arctan[(r1sina1 + r2sina2)/(r1cosa1 + r2cosa2)]

User Avatar

Wiki User

10y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why can't we add complex number in polar form?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Basic Math

How do you convret polar form of complex number into algebraic form?

For a complex number in polar form with Magnitude, and Angle: (Magnitude)*(cos(angle) + i*sin(angle)) will give the form: a + bi


How do you convert the complex number minus i into polar form?

A COMPLEX NUMBER CAN BE CONVERTED INTO A POLAR FORM LET US TAKE COMPLEX NUMBER BE Z=a+ib a is the real number and b is the imaginary number THEN MOD OF Z IS SQUARE ROOT OF a2+b2 MOD OF Z CAN ALSO BE REPRESENTED BY r . THEN THE MOD AMPLITUDE FORM IS r(cos@Very interesting, but -i is not a complex no. it is a simple (imaginary) no. with no real part.


How do you convert a complex number from polar form into rectangular form?

If the polar coordinates of a complex number are (r,a) where r is the distance from the origin and a the angle made with the x axis, then the cartesian coordinates of the point are: x = r*cos(a) and y = r*sin(a)


What complex number is a number of the form a plus bi where?

"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.


How do change a complex number to its standard form?

It isn't clear in what form you have the complex number. But you can change it from the form (absolute value, angle) to the form (real part + imaginary part) using the polar-rectangular conversion available on scientific calculators (and the other way round, with the rectangular-polar conversion). Note that a complex number in the form (real part + imaginary part) is most appropriate for addition and subtraction, while a complex number of the form (absolute value, angle) is most appropriate for multiplication or division, so depending on the operations, you may want to convert back and forth several times.

Related questions

How do you convret polar form of complex number into algebraic form?

For a complex number in polar form with Magnitude, and Angle: (Magnitude)*(cos(angle) + i*sin(angle)) will give the form: a + bi


How do you convert the complex number minus i into polar form?

A COMPLEX NUMBER CAN BE CONVERTED INTO A POLAR FORM LET US TAKE COMPLEX NUMBER BE Z=a+ib a is the real number and b is the imaginary number THEN MOD OF Z IS SQUARE ROOT OF a2+b2 MOD OF Z CAN ALSO BE REPRESENTED BY r . THEN THE MOD AMPLITUDE FORM IS r(cos@Very interesting, but -i is not a complex no. it is a simple (imaginary) no. with no real part.


How do you convert a complex number from polar form into rectangular form?

If the polar coordinates of a complex number are (r,a) where r is the distance from the origin and a the angle made with the x axis, then the cartesian coordinates of the point are: x = r*cos(a) and y = r*sin(a)


True or false: When its argument is restricted to (0,2pi), the polar form of a complex number is not unique?

False apex


What complex number is a number of the form a plus bi where?

"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.


A complex number is a number of the form a plus bi where?

"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.


How do change a complex number to its standard form?

It isn't clear in what form you have the complex number. But you can change it from the form (absolute value, angle) to the form (real part + imaginary part) using the polar-rectangular conversion available on scientific calculators (and the other way round, with the rectangular-polar conversion). Note that a complex number in the form (real part + imaginary part) is most appropriate for addition and subtraction, while a complex number of the form (absolute value, angle) is most appropriate for multiplication or division, so depending on the operations, you may want to convert back and forth several times.


Why can't we add and subtract polar form of complex numbers and multiply and divide the rectangular form of complex number?

You can certainly multiply and divide with the rectangular form, but it is somewhat easier in polar form. This is especially relevant if you want to extend to more complicated operations, such as higher powers or taking roots. As for the polar form, any method to add and subtract them directly would probably be quite complicated, and directly or indirectly involve many of the same calculations that are done in converting from polar to rectangular, and back. Try it! (That is, try to deduce the formulas for adding two complex numbers in polar form.)


What are the parts of a complex number?

A complex number can be thought of as a vector with two components, called the "real part" (usually represented on the horizontal axis), and the "imaginary part" (usually represented on the vertical axis). You can also express the complex number in polar form, that is, with a a length and an angle.


Solve 7-24i complex number?

31


when a complex number z is written in its polar form, z = r (cos(theta) + i * sin(theta)), the nonnegative number r is called the or modulus, or z?

Magnitude


What is the exponential form for complex numbers?

Exponential form is similar to 'polar form'. Call the Magnitude A, and the angle θ .Then the number is represented as A*eiθ (θ in radians). To convert to rectangular form, use Euler's formula:eiθ = cos(θ) + i*sin(θ)So the complex number A*eiθ = A*cos(θ) + A*i*sin(θ)