You can very well represent it as a polar number. But the angle is ambiguous; or rather, any angle will work.
Complex numbers whose polar representation is (r, theta) where 3*pi/2 < theta < 2*pi.
For a complex number in polar form with Magnitude, and Angle: (Magnitude)*(cos(angle) + i*sin(angle)) will give the form: a + bi
A COMPLEX NUMBER CAN BE CONVERTED INTO A POLAR FORM LET US TAKE COMPLEX NUMBER BE Z=a+ib a is the real number and b is the imaginary number THEN MOD OF Z IS SQUARE ROOT OF a2+b2 MOD OF Z CAN ALSO BE REPRESENTED BY r . THEN THE MOD AMPLITUDE FORM IS r(cos@Very interesting, but -i is not a complex no. it is a simple (imaginary) no. with no real part.
If the polar coordinates of a complex number are (r,a) where r is the distance from the origin and a the angle made with the x axis, then the cartesian coordinates of the point are: x = r*cos(a) and y = r*sin(a)
"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.
2sqrt2(cos45 + i * sin45)
Complex numbers whose polar representation is (r, theta) where 3*pi/2 < theta < 2*pi.
A complex number (z = x + iy) can be plotted the x-y plane if we consider the complex number the point (x,y) (where x is the real part, and y is the imaginary part). So once you plot the complex number on the x-y plane, draw a line from the point to the origin. The Principle Argument of z (denoted by Arg z) is the measure of the angle from the x-axis to the line (made from connecting the point to (0,0)) in the interval (-pi, pi]. The difference between the arg z and Arg z is that arg z is an countably infinite set. And the Arg z is an element of arg z. Why? : The principle argument is needed to change a complex number in to polar representation. Polar representation makes multiplication of complex numbers very easy. z^2 is pretty simple: just multiply out (x+iy)(x+iy). But what about z^100? This is were polar represenation helps us, and to get into this representation we need the principle argument. I hope that helped.
For a complex number in polar form with Magnitude, and Angle: (Magnitude)*(cos(angle) + i*sin(angle)) will give the form: a + bi
This is best done if the complex number is in polar coordinates - that is, a distance from the origin, and an angle. Take the square root of the argument (the absolute value) of the complex number; and half the angle.
A COMPLEX NUMBER CAN BE CONVERTED INTO A POLAR FORM LET US TAKE COMPLEX NUMBER BE Z=a+ib a is the real number and b is the imaginary number THEN MOD OF Z IS SQUARE ROOT OF a2+b2 MOD OF Z CAN ALSO BE REPRESENTED BY r . THEN THE MOD AMPLITUDE FORM IS r(cos@Very interesting, but -i is not a complex no. it is a simple (imaginary) no. with no real part.
"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.
If the polar coordinates of a complex number are (r,a) where r is the distance from the origin and a the angle made with the x axis, then the cartesian coordinates of the point are: x = r*cos(a) and y = r*sin(a)
False apex
"a + bi" is a common way to write a complex number. Here, "a" and "b" are real numbers.Another common way to write a complex number is in polar coordinates - basically specifying the distance from zero, and an angle.
Yes
A complex number can be thought of as a vector with two components, called the "real part" (usually represented on the horizontal axis), and the "imaginary part" (usually represented on the vertical axis). You can also express the complex number in polar form, that is, with a a length and an angle.