There must be fewer independent equation than there are variables. An equation in not independent if it is a linear combination of the others.
This can happen in different ways: a) More variables than equations. For instance, a single equation with two variables (such as x + y = 15), two equations with three variables, two equations with four variables, etc. b) To of the equations describe the same line, plane, or hyper-plane - this, in turn, will result in that you "really" have less equations than it seems. For example: y = 2x + 3 2y = 4x + 6 The second equation is simply the first equation multiplied by 2.
Any two numbers that make one of the equations true will make the other equation true.
As there is no system of equations shown, there are zero solutions.
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.
A linear equation in n variables, x1, x2, ..., xn is an equation of the forma1x1 + a2x2 + ... + anxn = y where the ai are constants.A system of linear equations is a set of m linear equations in n unknown variables. There need not be any relationship between m and n. The system may have none, one or many solutions.
Any system of linear equations can have the following number of solutions: 0 if the system is inconsistent (one of the equations degenerates to 0=1) 1 if the system is linearly independent infinity if the system has free variables and is not inconsistent.
There must be fewer independent equation than there are variables. An equation in not independent if it is a linear combination of the others.
The solution to a system on linear equations in nunknown variables are ordered n-tuples such that their values satisfy each of the equations in the system. There need not be a solution or there can be more than one solutions.
There are three kinds:the equations have a unique solutionthe equations have no solutionthe equations have infinitely many solutions.
Yes.
A.infinitely manyB.oneD.zero
1
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
4x + 2y = 6
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
None, one or infinitely many.