answersLogoWhite

0

An even number can be divided by 2 evenly. An odd number will have a remainder of 1 when divided by 2. A function can be either.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
More answers

That seems unreasonable logically, since even and odd are contrary mathematical concepts.

User Avatar

Cody S.

Lvl 1
3y ago
User Avatar

An even number can be divided by 2 evenly. An odd number will

have a remainder of 1 when divided by 2. A function can be

either.

User Avatar

Ming Kwok

Lvl 3
3y ago
User Avatar

yes it can

User Avatar

Kamiya Johnson

Lvl 2
3y ago
User Avatar

yes

User Avatar

anime peacer

Lvl 2
3y ago
User Avatar

Add your answer:

Earn +20 pts
Q: Can a function be both even and odd?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Is Y equals 0 an even or odd function?

f(x) = 0 is a constant function. This particular constant function is both even and odd. Requirements for an even function: f(x) = f(-x) Geometrically, the graph of an even function is symmetric with respect to the y-axis The graph of a constant function is a horizontal line and will be symmetric with respect to the y-axis. y=0 or f(x)=0 is a constant function which is symmetric with respect to the y-axis. Requirements for an odd function: -f(x) = f(-x) Geometrically, it is symmetric about the origin. While the constant function f(x)=0 is symmetric about the origin, constant function such as y=1 is not. and if we look at -f(x)=f(-x) for 1, we have -f(x)=-1 but f(-1)=1 since it is a constant function so y=1 is a constant function but not odd. So f(x)=c is odd if and only iff c=0 f(x)=0 is the only function which is both even and odd.


How can you determine whether a function is even odd or neither?

Looking at the graph of the function can give you a good idea. However, to actually prove that it is even or odd may be more complicated. Using the definition of "even" and "odd", for an even function, you have to prove that f(x) = f(-x) for all values of "x"; and for an odd function, you have to prove that f(x) = -f(-x) for all values of "x".


When do you use even odd and neither functions?

Basically, a knowledge of even and odd functions can simplify certain calculations. One place where they frequently appear is when using trigonometric functions - for example, the sine function is odd, while the cosine function is even.


How do you find out if the function is a even odd or neither I know your supposed to use f-x -fx but I am not so sure how to do it the problem is 2x to the third power minus x squared?

An even function is symmetric around the vertical axis. An odd function - such as the sine function - has a sort of symmetry too - around the point of origin. If you graph this specific function (for example, on the Wolfram Alpha website), you can see that the function has none of these symmetries. To prove that the function is NOT even, nor odd, just find a number for which f(x) is neither f(-x) nor -f(-x). Actually proving that a function IS even or odd (assuming it actually is) is more complicated, of course - you have to prove that it has the "even" or the "odd" property for EVERY value of x. Let f(x) = 2x3 - x2. Notice that f is defined for any x, since it is a polynomial function. If f(-x) = f(x), then f is even. If f(-x) = -f(x), then f is odd. f(-x) = 2(-x)3 - (-x)2 = -2x3 - x2 Since f(-x) ≠ f(x) = 2x3 - x2, f is not even. Since f(-x) ≠ - f(x) = -(2x3 - x2) = -2x3 + x2, f is not odd. Therefore f is neither even nor odd.


Determine whether a function is even odd or neither?

If f(-x) = f(x) for all x then x is even. Example f(x) = cos(x). If f(-x) = -f(x) for all x then x is odd. Example f(x) = sin(x). In all other cases, f(x) is neither.