f(x) = 0 is a constant function. This particular constant function is both even and odd. Requirements for an even function: f(x) = f(-x) Geometrically, the graph of an even function is symmetric with respect to the y-axis The graph of a constant function is a horizontal line and will be symmetric with respect to the y-axis. y=0 or f(x)=0 is a constant function which is symmetric with respect to the y-axis. Requirements for an odd function: -f(x) = f(-x) Geometrically, it is symmetric about the origin. While the constant function f(x)=0 is symmetric about the origin, constant function such as y=1 is not. and if we look at -f(x)=f(-x) for 1, we have -f(x)=-1 but f(-1)=1 since it is a constant function so y=1 is a constant function but not odd. So f(x)=c is odd if and only iff c=0 f(x)=0 is the only function which is both even and odd.
Looking at the graph of the function can give you a good idea. However, to actually prove that it is even or odd may be more complicated. Using the definition of "even" and "odd", for an even function, you have to prove that f(x) = f(-x) for all values of "x"; and for an odd function, you have to prove that f(x) = -f(-x) for all values of "x".
Basically, a knowledge of even and odd functions can simplify certain calculations. One place where they frequently appear is when using trigonometric functions - for example, the sine function is odd, while the cosine function is even.
An even function is symmetric around the vertical axis. An odd function - such as the sine function - has a sort of symmetry too - around the point of origin. If you graph this specific function (for example, on the Wolfram Alpha website), you can see that the function has none of these symmetries. To prove that the function is NOT even, nor odd, just find a number for which f(x) is neither f(-x) nor -f(-x). Actually proving that a function IS even or odd (assuming it actually is) is more complicated, of course - you have to prove that it has the "even" or the "odd" property for EVERY value of x. Let f(x) = 2x3 - x2. Notice that f is defined for any x, since it is a polynomial function. If f(-x) = f(x), then f is even. If f(-x) = -f(x), then f is odd. f(-x) = 2(-x)3 - (-x)2 = -2x3 - x2 Since f(-x) ≠ f(x) = 2x3 - x2, f is not even. Since f(-x) ≠ - f(x) = -(2x3 - x2) = -2x3 + x2, f is not odd. Therefore f is neither even nor odd.
If f(-x) = f(x) for all x then x is even. Example f(x) = cos(x). If f(-x) = -f(x) for all x then x is odd. Example f(x) = sin(x). In all other cases, f(x) is neither.
Yes f(x)=0 is both even and odd
both
yes
f(x) = 0
Even (unless c = 0 in which case it is either or both!)
An even function is a function that creates symmetry across the y-axis. An odd function is a function that creates origin symmetry.
I find it convenient to express other trigonometric functions in terms of sine and cosine - that tends to simplify things. The secant function is even because it is the reciprocal of the cosine function, which is even. The tangent function is the sine divided by the cosine - an odd function divided by an even function. Therefore it is odd. The cosecant is the reciprocal of an odd function, so it is naturally also an odd function.
An even function is symmetric about the y-axis. An odd function is anti-symmetric.
The only way a function can be both even and odd is for it to ignore the input, i.e. for it to be a constant function. e.g. f(x)=4 is both even and odd. An even function is one where f(x)=f(-x), and an odd one is where -f(x)=f(-x). This doesn't make sense. Let's analyze. For a function to be even, f(-x)=f(x). For a function to be odd, f(-x)=-f(x). In this case, f(x)=4, and f(-x)=4. As such, for the first part of the even-odd definition, we have 4=4, which is true, making the function even. However, for the second part of it, we have 4=-4 (f(-x)=4, but -f(x)=-4), which is not true. Therefore constant functions are even because f(-x)=f(x), but not odd because f(-x)!=-f(x).
Yes. Along with the tangent function, sine is an odd function. Cosine, however, is an even function.
An even number can be divided by 2 evenly. An odd number will have a remainder of 1 when divided by 2. A function can be either.
For an even function, f(-x) = f(x) for all x. For an odd function, f(-x) = -f(x) for all x.