answersLogoWhite

0

If the values of the function are all positive, then the integral IS the area under the curve.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
JudyJudy
Simplicity is my specialty.
Chat with Judy
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: How is definite integral connected to area under the curve?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Application of definite integral in real life?

Finding the area under a curve or the length of a line segment. These are real life uses, not just fun in your math class.


Difference between integral and differential calculus?

Differential calculus is concerned with finding the slope of a curve at different points. Integral calculus is concerned with finding the area under a curve.


How integration is reverse process of differentiation?

For example, the derivate of x2 is 2x; then, an antiderivative of 2x is x2. That is to say, you need to find a function whose derivative is the given function. The antiderivative is also known as the indifinite integral. If you can find an antiderivative for a function, it is fairly easy to find the area under the curve of the original function - i.e., the definite integral.


Discuss line integral and its real life applications?

A line integral can evaluate scalar and vector field functions along a curve/path. When applied on vector field, line integral is considered as measure of the total effect of the vector field along a specific curve whereas in scalar field application, the line integral is interpreted as the area under the field carved out by a particular curve.Line integral has many applications in physics. In mechanics, line integral is used to determine work done by a force in moving an object along a curve. In circuit analysis, it is used for calculating voltage.


Use the concept of a limit to explain how you could find the exact value for the definite integral value for a section of your graph?

The definite integral value for a section of a graph is the area under the graph. To compute the area, one method is to add up the areas of the rectangles that can fit under the graph. By making the rectangles arbitrarily narrow, creating many of them, you can better and better approximate the area under the graph. The limit of this process is the summation of the areas (height times width, which is delta x) as delta x approaches zero. The deriviative of a function is the slope of the function. If you were to know the slope of a function at any point, you could calculate the value of the function at any arbitrary point by adding up the delta y's between two x's, again, as the limit of delta x approaches zero, and by knowing a starting value for x and y. Conversely, if you know the antideriviative of a function, the you know a function for which its deriviative is the first function, the function in question. This is exactly how integration works. You calculate the integral, or antideriviative, of a function. That, in itself, is called an indefinite integral, because you don't know the starting value, which is why there is always a +C term. To make it into a definite integral, you evaluate it at both x endpoints of the region, and subtract the first from the second. In this process, the +C's cancel out. The integral already contains an implicit dx, or delta x as delta x approaches zero, so this becomes the area under the graph.