Exponential and logarithmic functions are inverses of each other.
It is used in hyperbolic functions; it's the rule to change a normal trig function into hyperbolic trig function. Example: cos(x-y) = cosx cosy + sinx siny Cosh(x-y) = coshx coshy - sinhx sinhy Whenever you have a multiplication of sin, you write the hyperbolic version as sinh but change the sign. also applied when: tanxsinx (sinx)^2 etc... Hope this helps you
There's no such thing is hyperbolic time chamber. It's fictional building from manga/anime series called Dragonball / Dragonball Z. See related questions below for the similar-sounding "hyperbaric chamber".
"Exaggerated" or related to the shape of a "hyperbola" (which looks kind of like a U) in math.
Placing a question mark at the end of a phrase does not make it a sensible question. Try to use a whole sentence to describe what it is that you want answered.
The inverses of hyperbolic function are the area hyperbolic functions. They are called area functions becasue they compute the area of a sector of the unit hyperbola x2 − y2 = 1 This is similar to the inverse trig functions which correspond to arclength of a sector on the unit circle
They are bijections.
Hyperbolic functions can be used to describe the position that heavy cable assumes when strung between two supports.
The basic ones are: sine, cosine, tangent, cosecant, secant, cotangent; Less common ones are: arcsine, arccosine, arctangent, arccosecant, arcsecant, arccotangent; hyperbolic sine, hyperbolic cosine, hyperbolic tangent, hyperbolic cosecant, hyperbolic secant, hyperbolic cotangent; hyperbolic arcsine, hyperbolic arccosine, hyperbolic arctangent, hyperbolic arccosecant, hyperbolic arcsecant, hyperbolic arccotangent.
They are inverses of each other.
Exponential and logarithmic functions are inverses of each other.
Inverse functions are two functions that "undo" each other. Formally stated, f(x) and g(x) are inverses if f(g(x)) = x. Multiplication and division are examples of two functions that are inverses of each other.
An arcsine is any of the single- or multivalued functions which are inverses of the sine function.
They are reflected in the line of y=x
The hyperbolic functions are related to a hyperbola is the same way the the circular functions are related to a circle. So, while the points with coordinates [cos(t), sin(t)] generate the unit circle, their hyperbolic counterparts, [cosh(t) , sinh(t)] generate the right half of the equilateral hyperbola. Other circular functions (tan, sec, cosec and cot) also have their hyperbolic counterparts, as do the inverse functions. An alternative, equivalent pair of definitions is: cosh(x) = (ex + e-x)/2 and sinh(x) = (ex - e-x)/2
There are three types of trigonometric functions, they are: 1- Plane Trigonometric Functions 2- Inverse Trigonometric Functions and 3- Hyperbolic Trigonometric Functions
Logarithmic functions are converted to become exponential functions because both are inverses of one another.