answersLogoWhite

0

I believe the questioner means e^(-x^2), which is perhaps the most famous of many functions which do not have anti-derivatives which can be expressed by elementary functions. The definite integral from minus infinity to plus infinity, however, is known: It is sqrt(pi).

The antiderivative to e^(-2x) is, (-*e^(-2x)/2)

Though the anti-derivative (integral) of many functions cannot be expressed in elementary forms, a variety of functions exist only as solutions to certain "unsolvable" integrals. the equation erf(x), also known as the error function, equals (2/sqrt(pi))*integral e(-t^2) dt from 0 to x. As mentioned before, this cannot be expressed through basic mathematical functions, but it can be expressed as an infinite series.

If the question is the antiderivative of e - x2, the answer is e*x - x3/3

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: What is the anti-derivative of e-x2?
Write your answer...
Submit
Still have questions?
magnify glass
imp