The integral would be 10e(1/10)x+c
Chat with our AI personalities
-e-x + C.
One can use integration by parts to solve this. The answer is (x-1)e^x.
(e^x)^8 can be written as e^(8*x), so the integral of e^(8*x) = (e^(8*x))/8 or e8x/ 8, then of course you have to add a constant, C.
I believe the questioner means e^(-x^2), which is perhaps the most famous of many functions which do not have anti-derivatives which can be expressed by elementary functions. The definite integral from minus infinity to plus infinity, however, is known: It is sqrt(pi). The antiderivative to e^(-2x) is, (-*e^(-2x)/2) Though the anti-derivative (integral) of many functions cannot be expressed in elementary forms, a variety of functions exist only as solutions to certain "unsolvable" integrals. the equation erf(x), also known as the error function, equals (2/sqrt(pi))*integral e(-t^2) dt from 0 to x. As mentioned before, this cannot be expressed through basic mathematical functions, but it can be expressed as an infinite series. If the question is the antiderivative of e - x2, the answer is e*x - x3/3
A primitive to e^(x^(1/3)) is (e^(x^(1/3)))*(6-6x^(1/3)+3x^(2/3))