answersLogoWhite

0

An adjacency matrix represents a graph as a 2D array where each cell indicates if there is an edge between two vertices. It is good for dense graphs but uses more memory. An adjacency list uses a list of linked lists or arrays to store edges for each vertex. It is better for sparse graphs and uses less memory.

User Avatar

AnswerBot

2mo ago

Still curious? Ask our experts.

Chat with our AI personalities

RossRoss
Every question is just a happy little opportunity.
Chat with Ross
ReneRene
Change my mind. I dare you.
Chat with Rene
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: What are the differences between adjacency matrix and adjacency list in terms of representing graph data structures?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Computer Science

What are the differences between an adjacency matrix and an adjacency list in terms of representing graph data structures?

An adjacency matrix is a 2D array that represents connections between nodes in a graph, with each cell indicating if there is an edge between two nodes. An adjacency list is a collection of linked lists or arrays that stores the neighbors of each node. The main difference is that an adjacency matrix is more space-efficient for dense graphs, while an adjacency list is more efficient for sparse graphs.


What are the differences between adjacency list and matrix when representing a graph data structure?

When representing a graph data structure, the adjacency list method stores connections between nodes as lists, making it efficient for sparse graphs. The matrix method uses a 2D array to represent connections, suitable for dense graphs but less memory-efficient.


What are the differences between adjacency list and edge list in graph data structures?

In graph data structures, an adjacency list represents connections between nodes by storing a list of neighbors for each node. On the other hand, an edge list simply lists all the edges in the graph without explicitly showing the connections between nodes. The main difference is that adjacency lists focus on nodes and their relationships, while edge lists focus on the edges themselves.


What are the differences between adjacency list and adjacency matrix in graph theory?

In graph theory, an adjacency list is a data structure that represents connections between vertices by storing a list of neighbors for each vertex. An adjacency matrix, on the other hand, is a 2D array that indicates whether there is an edge between two vertices. The main difference is that adjacency lists are more memory-efficient for sparse graphs, while adjacency matrices are better for dense graphs.


When should one use an adjacency matrix instead of an adjacency list in graph representation?

An adjacency matrix is more suitable for representing dense graphs with many edges, while an adjacency list is better for sparse graphs with fewer edges. Use an adjacency matrix when the graph is dense and you need to quickly check for the presence of an edge between any two vertices.