To find the determinant of a matrix on a Casio fx-991MS calculator, you first need to enter the matrix into the calculator using the matrix mode. Then, navigate to the matrix menu and select the matrix you want to find the determinant of. Finally, choose the option to calculate the determinant, and the calculator will display the result. Remember that the determinant of a matrix is a scalar value that represents certain properties of the matrix.
233
For a matrix A, A is read as determinant of A and not, as modulus of A. ... sum of two or more elements, then the given determinant can be expressed as the sum
A single math equation does not have a determinant. A system of equations (3x3 , 4x4, etc.) will have a determinant. You can find a determinant of a system by converting the system into a corresponding matrix and finding its determinant.
It isn't clear what you want to solve for. If you want to find the matrix, there is not a unique solution - there are infinitely many matrices with the same determinant.
There is no easy way to find the determinant; it's long and tedious. There are computer programs available (like MATLAB) that will find the determinant. You'll find there probably won't be a large matrix in an exam if you're required to find the determinant.
If it a 2x2 matrix, the determinant is 3*a - (-2)*5 = 3a + 10 = 7 So 3a = -3 so a = -1
Assuming that the terms, a and AA, are commutative, It is 1 + a^3 + (AA)^3 - 3aAA
The fx-991MS lacks the inverse operator so the matrix inverse is not possible, Try 991Es instead
A determinant is defined for square matrices only.To find the determinant of the matrix you need to:find all n-tuples of elements of the matrix such that each row and each column of the matrix is represented.calculate the product of the elements.calculate the sign for that term. To see how this is done, see below.calculate the sum of the signed products: that is the determinant.To calculate the sign for the product of the n-tuple, arrange the elements in row order. Swap the elements, two at a time, to get them in column order. If the number of swaps required is even then the product is assigned a positive sign, and if odd then a negative sign.
A determinant is defined for square matrices only.To find the determinant of the matrix you need to:find all n-tuples of elements of the matrix such that each row and each column of the matrix is represented.calculate the product of the elements.calculate the sign for that term. To see how this is done, see below.calculate the sum of the signed products: that is the determinant.To calculate the sign for the product of the n-tuple, arrange the elements in row order. Swap the elements, two at a time, to get them in column order. If the number of swaps required is even then the product is assigned a positive sign, and if odd then a negative sign.
relationship between determinant and adjoint
Call your matrix A, the eigenvalues are defined as the numbers e for which a nonzero vector v exists such that Av = ev. This is equivalent to requiring (A-eI)v=0 to have a non zero solution v, where I is the identity matrix of the same dimensions as A. A matrix A-eI with this property is called singular and has a zero determinant. The determinant of A-eI is a polynomial in e, which has the eigenvalues of A as roots. Often setting this polynomial to zero and solving for e is the easiest way to compute the eigenvalues of A.