A Hadamard Matrix is a square matrix composed of 1 or -1. Using a square matrix system the hadamard matrix could be created
A c program is also known as a computer program. A singular matrix has no inverse. An equation to determine this would be a/c=f. <<>> The determinant of a singular matix is zero.
Automated proofs are a complicated subject. If you are not an expert on the subject, all you can hope for is to write a program where you can input a sample matrix (or that randomly generates one), and verifies the proposition for this particular case. If the proposition is confirmed in several cases, this makes the proposition plausible, but is by no means a formal proof.Better try to prove it without writing any program.Note: it is not even true; it is the inverse of the matrix which gives identity when is multiplied with the original matrix.
using multidimensional array
means whether the matrix is same or not program for symmetric matrix : include<stdio.h> #include<conio.h> main() { int a[10][10],at[10][10],k,i,j,m,n; clrscr(); printf("enter the order of matrix"); scanf("%d %d",&m,&n); printf("enter the matrix"); for(i=0;i<m;i++) { for(j=0;j<n;j++) scanf("%d",&a[i][j]); } for(i=0;i<m;i++) { for(j=0;j<n;j++) at[i][j]=a[j][i]; } for(i=0;i<m;i++) { for(j=0;j<n;j++) { if(at[i][j]!=a[i][j]) k=1; } } if(k==1) printf("not symmetric"); else printf("symmetric"); getch(); }
A determinant is defined only for square matrices, so a 2x3 matrix does not have a determinant.Determinants are defined only for square matrices, so a 2x3 matrix does not have a determinant.
The determinant function is only defined for an nxn (i.e. square) matrix. So by definition of the determinant it would not exist for a 2x3 matrix.
No. A square matrix has an inverse if and only if its determinant is nonzero.
diagonal
The square matrix have determinant because they have equal numbers of rows and columns. <<>> Determinants are not defined for non-square matrices because there are no applications of non-square matrices that require determinants to be used.
The determinant is only defined for square matrices.
For a matrix A, A is read as determinant of A and not, as modulus of A. ... sum of two or more elements, then the given determinant can be expressed as the sum
If it is not a square matrix. You cannot invert a square matrix if it is singular. That means that at least one of the rows of the matrix can be expressed as a linear combination of the other rows. A simple test is that a matrix cannot be inverted if its determinant is zero.
A single math equation does not have a determinant. A system of equations (3x3 , 4x4, etc.) will have a determinant. You can find a determinant of a system by converting the system into a corresponding matrix and finding its determinant.
That's a special calculation done on square matrices - for example, on a 2 x 2 matrix, or on a 3 x 3 matrix. For details, see the Wikipedia article on "Determinant".
It isn't clear what you want to solve for. If you want to find the matrix, there is not a unique solution - there are infinitely many matrices with the same determinant.
Any n x n (square) matrix have a determinate. If it's not a square matrix, we don't have a determinate, or rather we don't care about the determinate since it can't be invertible.