"l" is known as the angular momentum quantum number. Principal Quantum Number = n Angular Momentum " " = l Magnetic " " = ml Spin " " = ms (Only possible values are 1/2 and -1/2) Search "Permissible Values of Quantum Numbers for Atomic Orbitals" for the values. You basically have to understand the concepts & be able to recreate the chart for tests, otherwise you can blindly memorize it. The chart should be in your book.
The magnetic quantum number ml depends on the orbital angular momentum (azimuthal) quantum number, l, which in turn depends on the principal quantum number, n. The orbital angular momentum (azimuthal) quantum number, l, runs from 0 to (n-1) where n is the principal quantum number. l= 0 is an s orbital, l= 1 is a p subshell, l= 2 is a d subshell, l=3 is an f subshell. The magnetic quantum number, ml, runs from -l to +l (sorry this font is rubbish the letter l looks like a 1) so for an f orbital the values are -3. -2, -1, 0, +1, +2, +3, so 7 f orbitals in total. ml "defines " the shape of the orbital and the number within the subshell.
Yes, it would be pz: ml= 0, px: ml=-1 and py: +1
The magnetic quantum number can have integer values ranging from -ℓ to +ℓ, where ℓ is the azimuthal quantum number. So the value of the magnetic quantum number would depend on the specific value of the azimuthal quantum number provided to you.
ml = -1
No, for any given electron, the principle quantum number will be larger. For example, a second shell, p-subshell electron will have the quantum numbers {2, 1, ml, ms} where mlcan be -1, 0, or 1 and, as always, ms can be ½ or -½. The largest ml can be is +1, which is smaller than the principle quantum number, 2.
The third quantum number, ml, describes the orientation of an orbital in space. It specifies the orbital's orientation relative to the x, y, and z axes. It can have integer values ranging from -l to +l.
The quantum numbers of calcium are: Principal quantum number (n): 4 Angular quantum number (l): 0 Magnetic quantum number (ml): 0 Spin quantum number (ms): +1/2
The four quantum numbers for germanium are: Principal quantum number (n) Azimuthal quantum number (l) Magnetic quantum number (ml) Spin quantum number (ms)
The four quantum numbers are: Principal quantum number (n) - symbolized as "n" Azimuthal quantum number (l) - symbolized as "l" Magnetic quantum number (ml) - symbolized as "ml" Spin quantum number (ms) - symbolized as "ms"
The quantum numbers for the seventeenth electron of Argon would be n=3 (principal quantum number), l=1 (azimuthal quantum number), ml=0 (magnetic quantum number), and ms= -1/2 (spin quantum number).
The fourth quantum number is the electron spin quantum number, denoted by (m_s). For a 1S orbital with 2 electrons, the electron spin quantum numbers of the two electrons would be (m_s = +\frac{1}{2}) and (-\frac{1}{2}) according to the Pauli exclusion principle.