Yes. For example, the set of odd natural numbers is a infinite subset of the set of integers.
example of infinite set
I have never heard of *"indefinite set" but an infinite sat is a set which had infinite members.An example of an Infinite Set is:the set of Natural Numbers{1, 2, 3, ...}there are also undefined sets...
Sets are collection of distinct objects. In mathematics there are different types of sets like Finite set, Infinite set, Universal set, subset, equal set, equivalent set. Example of Finite set {1,2,3,4}. Infinite set:{1,2,3....}.
Set is a well defined collection of objects. By the number of elements in the set, it can be classified into two as 1.Finite set 2. Infinite set. Example for finite set:{1,2,3,4,5...10}.Example for Infinite set:{1,2,3,4,.....}
No, because it is possible to count all the animals in the world
The set of integers is an infinite set as there are an infinite number of integers.
In mathematics, a finite set is a set that has a finite number of elements. For example, (2,4,6,8,10) is a finite set with five elements. The number of elements of a finite set is a natural number (non-negative integer), and is called the cardinality of the set. A set that is not finite is called infinite. For example, the set of all positive integers is infinite: (1,2,3,4, . . .)
A subset of some set X is, by definition, any set whose elements are entirely contained in X. So the answer is yes. As an example, take your infinite set, and select 3 or 10 or any finite number of your favorite elements in this set. The set of your chosen elements is a finite subset of the infinite set.
No. It can be infinite, finite or null. The set of odd integers is infinite, the set of even integers is infinite. Their intersection is void, or the null set.
In terms of size: the null set, a finite set, a countably infinite set and an uncountably infinite set. A countably infinite set is one where each element of the set can be put into a 1-to-1 correspondence with the set of natural numbers. For example, the set of positive even numbers. It is infinite, but each positive even number can me mapped onto one and only one counting number. The set of Real numbers cannot be mapped in such a way (as was proven by Cantor).
A null set, a finite set, a countable infinite set and an uncountably infinite set.