graph the inequality 5x+2y<4
A bivariate linear inequality.
Linear inequalities in two variables involve expressions that use inequality symbols (such as <, >, ≤, or ≥), while linear equations in two variables use an equality sign (=). The solution to a linear equation represents a specific line on a graph, while the solution to a linear inequality represents a region of the graph, typically shaded to show all the points satisfying the inequality. Moreover, linear inequalities allow for a range of values, whereas linear equations specify exact values for the variables.
we should prevent inequality by
The shaded region above or below the line in the graph of a linear inequality is called the solution region. This region represents all the possible values that satisfy the inequality. Points within the shaded region are solutions to the inequality, while points outside the shaded region are not solutions.
When graphing a linear inequality, the first step is to replace the inequality symbol with an equal sign to graph the corresponding linear equation. This creates a boundary line, which can be solid (for ≤ or ≥) or dashed (for < or >) depending on whether the points on the line are included in the solution set. After graphing the line, you then determine which side of the line represents the solution set by testing a point (usually the origin if it's not on the line) to see if it satisfies the original inequality. Finally, shade the appropriate region to indicate the solutions to the inequality.
The Feasible Region
To graph the solution to the inequality (-3x - 720 < 0), you first need to solve for (x). Rearranging the inequality gives (x > -240). On the graph, this means you would draw a number line, shade to the right of (-240), and place an open circle at (-240) to indicate that (-240) is not included in the solution.
The inequality (6x + 2y - 10 > 0) can be rewritten in slope-intercept form as (y > -3x + 5). The boundary line is (y = -3x + 5), which has a slope of -3 and a y-intercept of 5. The region above this line represents the solution set for the inequality. Since the inequality is strict (>), the boundary line itself is not included in the solution.
The question cannot be answered because there is no inequality there!
it is called a half plane :)
To graph linear inequalities, you first identify the boundary line by rewriting the inequality in slope-intercept form (y = mx + b) and plotting the corresponding linear equation. If the inequality is strict (e.g., < or >), you use a dashed line to indicate that points on the line are not included. For non-strict inequalities (e.g., ≤ or ≥), a solid line is used. Finally, you shade the appropriate region of the graph to represent the solutions that satisfy the inequality, based on whether the inequality is greater than or less than.
Through signs of inequality Solve each inequality Graph the solution? 2(m-3)+7<21 4(n-2)-6>18 9(x+2)>9(-3)