carrots, potatoes, and mush roomms.
40 watt light bulb. This is obvious. Go do an experiment. -_-
A zero watt bulb does not consume any power, so it does not have a voltage rating. Voltage is a measure of electrical potential difference, typically associated with the amount of energy transferred per unit charge. In the case of a zero watt bulb, there is no power being consumed, so there is no voltage required to power it.
Watts = Volts x Amps x Power Factor. An incandescent light bulb is a resistive load so PF = 1. ANSWER: = 1/2 Amp
When measured with an infrared thermometer it read 169.9 degrees F.
The answer depends entirely on the wattage of bulb used! You can find the amperage of your light by using the Power Law which states that amperage = wattage divided by voltage. Thus a 60 watt bulb on a 120 volt system would draw .5 or 1/2 an amp.
This depends on how long it is being used. The 60 Watt bulb consumes 2.6667 times the power of an 18 Watt bulb, but energy equals power times time. There is also an amount of 'hidden' energy: the energy to manufacture and transport the bulb. This depends on how long it is being used. The 60 Watt bulb consumes 2.6667 times the power of an 18 Watt bulb, but energy equals power times time. There is also an amount of 'hidden' energy: the energy to manufacture and transport the bulb.
A 60 watt light bulb is a light bulb with 60 watts capacity. When talking about watts, you're talking about the power that is transferred from the appliance to the accessories. Therefore, the light bulb labeled "60 watts" takes 60 watts to light up. A 60 watt light bulb will not be as bright as a 120 watt light bulb.
power difference
It can only power a flash light!
More watts means it uses more energy per second (watt is a unit of power). If it is a light-bulb of the same type of technology, the higher-watt light bulb would also give off more light.
An electrical watt is a measure of power. A 40 watt light bulb uses 40 watts of electrical power. It has a relative measure of twice the light output of a 20 watt bulb and one half the output of an 80 watt bulb. A 40 watt bulb uses 40 Joules of energy each second, or 40 watt-hours of energy each hour. In 1000 hours it uses 40 kilowatt-hours or Units of electrical energy.
No, the brain does not operate on the same amount of power as a 10 watt light bulb. The brain is estimated to use about 20 watts of power, which is roughly equivalent to the energy consumption of a dim incandescent light bulb.
The more energy that is transferred in a certain time, the greater the power. A 100W light bulb transfers more electrical energy each second than a 60W light bulb.The equation below shows the relationship between power, potential difference (voltage) and current:power (watts) = current (amps) x potential difference (volts)
A watt is a measurement of electricity, usually pertaining to light. Light bulbs luminosity is graded by wattage, such as a 60 watt bulb, 100 watt bulb and so on. You would find a watt in a light bulb, to start.
No, a 6 volt battery is not strong enough to power a 40 watt bulb, which typically requires around 12 volts to operate efficiently. You would need a higher voltage power source to light up a 40 watt bulb.
40 watts of consumed power. The light output may be greater with one compared to the other, but wattage alone does not give us that information. Electric heaters, for example, consume 1500 watts of power and produce almost no visible light.Check the Lumen's. That is where the difference is.Current draw and light output.A 60 watt bulb uses 60 watts of electricity (i.e. it converts 60 joules of energy per second), a 100 watt bulb converts 100 joules per second. Electrical power is measured in watts. Since a 60 watt bulb pulls less energy to it than a 100 watt bulb the 60 watt bulb will not be as bright.Resistance.Just in the amount of power used and the brightness of the bulb. The 60 watt bulb might be a bit smaller.
No, they are not the same thing. 60 Hz refers to the frequency of the electricity supply, while a 60-watt light bulb refers to the power consumption or output of the bulb.