The number of digits is immaterial, the principal is exactly the same. The key to reversing any number is in the following user-defined function:
uint reverse(uint num)
{
uint rev=0;
while(num)
{
rev*=10;
rev+=num%10;
num/=10;
}
return(rev);
}
The following code demonstrates how to reverse a 6 digit number entered from the console.
#include<iostream>
#include<string>
#include<sstream>
typedef unsigned int uint;
uint reverse(uint num)
{
uint rev=0;
while(num)
{
rev*=10;
rev+=num%10;
num/=10;
}
return(rev);
}
int getrange(uint digits,uint& min,uint&max)
{
if(!digits)
return(-1);
min=1;
while(--digits)
min*=10;
max=min*10-1;
return(0);
}
uint inputnumber(const std::string prompt,const uint min,const uint max)
{
using namespace std;
uint result=0;
while(1)
{
cout<<prompt;
string s;
getline(cin,s);
if(s.size())
result=stoul(s,0,10);
if(result<min result>max)
cout<<"The number must be in the range "
<<min<<".."<<max<<"\n"
<<"Please enter another number.\n"<<endl;
else
break;
}
return(result);
}
uint inputnumber(const uint digitcount)
{
using namespace std;
uint min=0, max=0;
if(getrange(digitcount,min,max)==-1)
return(0);
std::stringstream prompt;
prompt<<"Enter a "<<digitcount<<" digit number: ";
return(inputnumber(prompt.str(),min,max));
}
int main()
{
using namespace std;
uint num=inputnumber(6); // 6 digits.
if(num)
{
uint rev=reverse(num);
cout<<"Reverse: "<<rev<<"\n"<<endl;
}
return(0);
}
Output:
Enter a 6 digit number: 123456
Reverse: 654321
# Algo: # 1) Input number n # 2) Set rev=0, sd=0 # 3) Find single digit in sd as n % 10 it will give (left most digit) # 4) Construct revrse no as rev * 10 + sd # 5) Decrment n by 1 # 6) Is n is greater than zero, if yes goto step 3, otherwise next step # 7) Print rev # if [ $# -ne 1 ] then echo "Usage: $0 number" echo " I will find reverse of given number" echo " For eg. $0 123, I will print 321" exit 1 fi n=$1 rev=0 sd=0 while [ $n -gt 0 ] do sd=`expr $n % 10` rev=`expr $rev \* 10 + $sd` n=`expr $n / 10` done echo "Reverse number is $rev"
The next number in the sequence is 9. The rule is to add 2, then subtract 1, add 2, subtract 1, and so on.
<float_literals> -> <digit> { <digit> } [ . ] [ { <digit> } ] <digit> -> "0" | <digit excluding zero> <digit excluding zero> -> "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" hi dude i wish you are satisfied with my answer LOL ^^
It's a simple example of addition.The solution looks like this:10 + 9 + 7 + 6 + 6 + 6 + 5 = 49
Repeatedly divide the number by 8 until the number is zero. Take the remainders from each division (the remainders will always be in the range 0 to 7 inclusive). The first division finds the lowest-order digit, the last finds the highest-order digit. Example: Decimal value: 421 421 / 8 = 52 r 5 52 / 8 = 6 r 4 6 / 8 = 0 r 6 The remainders are 6, 4 and 5, so 421 decimal is 645 octal. To convert from octal to decimal, multiply each octal digit by 8^n, where n is the zero-based order of the digit (0 being the lowest order), then sum the products. Example: Octal number: 645 5 * (8^0) = 5 * 1 = 5 4 * (8^1) = 4 * 8 = 32 6 * (8^2) = 6 * 64 = 384 384 + 32 + 5 = 421 Note that n^0 = 1 for all n>=0.
261, 264, or 267
The greatest six-digit number is 199,999.
what is the difference between the largest 8-digit number and the smallest 6-digit number
The last digit: the 6.The last digit: the 6.The last digit: the 6.The last digit: the 6.
The greatest six-digit number is 199,999.
Since there are only five different digits, a 6-digit number can only be generated if a digit can be repeated. If digits can be repeated, the smallest 6-digit number is 111111.
999,999 is 6 digits Adding 1 makes it 1,000,000 = a 7 digit number.
987654
0
60 is the number in which the digit 6 have a greater value as compared to 106.
Take the smallest 6-digit even number, then subtract one from it.
Answer is 411 Logic: You multiply the two numbers in LHS of the equation and reverse the result to form the first two digits of RHS and for the 3rd digit you subtract one from the 2nd number on the LHS of the equation.