answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: Is Fourier series used in power electronics to generate harmonics?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Fourier series of sine wave?

The fourier series of a sine wave is 100% fundamental, 0% any harmonics.


What is harmonic as applied to fourier series?

When we do a Fourier transformation of a function we get the primary term which is the fundamental frequency and amplitude of the Fourier series. All the other terms, with higher frequencies and lower amplitudes, are the harmonics.


Discontinuous function in fourier series?

yes a discontinuous function can be developed in a fourier series


In Fourier transformation and Fourier series which one follows periodic nature?

The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.


Difference between fourier series and z-transform?

Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.