answersLogoWhite

0


Best Answer

The mechanical Advantage is FORCE TIMES DISTANCE

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the mechanical advantage of a ramp What is the mechanical advantage of a ramp standing straight up?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Is the ideal mechanical advantage of the ramp is it's mechanical advantage with friction?

No, the ideal is without friction.


What is the mechanical advantage of a machine which only changes the direction of the applied force?

One.Since the question clearly states that the machine only changes the direction there can be no mechanical advantage gained.In order for a machine to have a mechanical advantage greater than 1, the machine must be able to change two or more of these factors:The amount of force exertedThe distance over which the force is exertedThe direction over which the force is exerted


What is the ideal mechanical advantage of a ramp 3 meters long and 1.5 meters high?

the mechanical advantage would be 3 because you have to do 6 divided by 2.


How does friction affect the mechanical advantage of a simple machine?

friction opposes the mechanical advantage of a simple machine. for example, if you had a inclined plane that gave you an advantage of 3:1 (3 times longer then it is high) the frictional force cause by an object being pushed up the ramp would be in the direction opposite to the direction of motion equal to u*N (mu times the normal force of the object) so for a 10 kg object being pushed up the ramp, under normal gravity = 9.81 N and a coefficent of friction = .3, the frictional force would be equal to 3 N. if you were pushing the object on flat ground with a force of 15N, you would actually need 18 N to maintain the same speed of having no friction appling this to the ramp, if 15N is needed to push on flat ground, only 5 N would be needed to push the object up a 0 friction ramp, and 8 N would be needed to push it up a ramp with friction to maintain the same speed. this is true for all simple machines, and it only depends on where the friction is being created, weather it be friction between a screw and wood, a rope and the pulley, or the fulcrum and a lever


How do you calculate the ideal mechanical advantage of a lever?

It's 1. IMA = Distance in / Distance out. A single pulley doesn't do anything toward mechanical advantage, it changes the direction of the force. Not always. A single-axeled pulley (the typical pulley) has an IMA of 1, having one axel. If there was a second axel, then the IMA would = 2, so on and so forth. The easy way to do it is IMA = # of axels.

Related questions

How do you find the mechanical advantage of a ramp?

The mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical rise. This ratio represents how much less force is required to move an object up the ramp compared to lifting it straight up. The formula for mechanical advantage of a ramp is: Mechanical Advantage = Length of ramp / Vertical rise.


What is the relationship between the height of the ramp and it and its ideal mechanical advantage?

The ideal mechanical advantage of a ramp is directly related to the height of the ramp. The ideal mechanical advantage is calculated as the ratio of the length of the ramp to its vertical height. So, the higher the ramp, the greater the ideal mechanical advantage.


How does the length of a ramp affect its mechanical advantage?

The longer the ramp, the smaller the mechanical advantage. Mechanical advantage is determined by the ratio of the length of the ramp to its height. As the ramp gets longer, the ratio decreases, resulting in a lower mechanical advantage.


A stone block is pushed up a ramp that is 120m long and 20m high. what is the ideal mechanical advantage of the ramp?

The ideal mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical height. In this case, the ideal mechanical advantage of the ramp is 120m (length) divided by 20m (height) which equals 6. Therefore, the ideal mechanical advantage of the ramp is 6.


Would increasing the length of a ramp increase mechanical advantage?

Increasing the length of a ramp does not change the mechanical advantage, as mechanical advantage depends on the ratio of the output force to the input force. The length of the ramp affects the distance over which the force is applied, but not the mechanical advantage itself.


Does Increasing the angle a ramp makes with the horizontal decreases the mechanical advantage?

No, increasing the angle of a ramp actually increases the mechanical advantage. Mechanical advantage is calculated as the length of the slope of the ramp divided by the vertical height it spans. As the angle of the ramp increases, the slope length increases, resulting in a higher mechanical advantage.


The distance from the ground to the floor of a trailer is 20 inches. The length of the ramp is 50 inches. What is the mechanical advantage of this simple machine?

The mechanical advantage of a ramp can be calculated as the ratio of the length of the ramp to the vertical height it spans. In this case, the mechanical advantage is 50 inches (length of the ramp) divided by 20 inches (vertical height), which equals 2.5. So, the mechanical advantage of this ramp is 2.5.


What will lengthening a ramp do to its ideal mechanical advantage?

Increase the advantage.


What is the ideal mechanical advantage of this ramp?

The ideal mechanical advantage of a ramp is equal to the length of the ramp divided by the vertical height it lifts an object. This ratio gives an indication of how much easier it is to move an object up the ramp compared to lifting it vertically. A higher mechanical advantage indicates a more efficient ramp design.


How do you increase the mechanical advantage of an inclined plane?

the formula for the mechanical advantage of an inclined plane is the length divide by the height.


Is the ideal mechanical advantage of the ramp is it's mechanical advantage with friction?

No, the ideal is without friction.


How does a ramp give you mechanical advantage?

A ramp gives you mechanical advantage by allowing you to exert your force over a longer distance to move an object vertically. By using a ramp, you can reduce the amount of force needed to lift an object to a certain height compared to lifting it straight up. This makes it easier to move heavy objects.