answersLogoWhite

0

Increase the advantage.

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

What is the relationship between the height of the ramp and it and its ideal mechanical advantage?

The ideal mechanical advantage of a ramp is directly related to the height of the ramp. The ideal mechanical advantage is calculated as the ratio of the length of the ramp to its vertical height. So, the higher the ramp, the greater the ideal mechanical advantage.


A stone block is pushed up a ramp that is 120m long and 20m high. what is the ideal mechanical advantage of the ramp?

The ideal mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical height. In this case, the ideal mechanical advantage of the ramp is 120m (length) divided by 20m (height) which equals 6. Therefore, the ideal mechanical advantage of the ramp is 6.


Is the ideal mechanical advantage of the ramp is it's mechanical advantage with friction?

No, the ideal is without friction.


What is the ideal mechanical advantage of this ramp?

The ideal mechanical advantage of a ramp is equal to the length of the ramp divided by the vertical height it lifts an object. This ratio gives an indication of how much easier it is to move an object up the ramp compared to lifting it vertically. A higher mechanical advantage indicates a more efficient ramp design.


What is the mechanical advantage of a ramp What is the mechanical advantage of a ramp standing straight up?

The mechanical Advantage is FORCE TIMES DISTANCE


How does the length of a ramp affect its mechanical advantage?

The longer the ramp, the smaller the mechanical advantage. Mechanical advantage is determined by the ratio of the length of the ramp to its height. As the ramp gets longer, the ratio decreases, resulting in a lower mechanical advantage.


How do you find the mechanical advantage of a ramp?

The mechanical advantage of a ramp is calculated by dividing the length of the ramp by the vertical rise. This ratio represents how much less force is required to move an object up the ramp compared to lifting it straight up. The formula for mechanical advantage of a ramp is: Mechanical Advantage = Length of ramp / Vertical rise.


What is the ideal mechanical advantage of inclined plane?

The ideal mechanical advantage of an inclined plane is the ratio of the length of the incline to the vertical rise. It is calculated by dividing the length of the ramp by the vertical height of the ramp.


Would increasing the length of a ramp increase mechanical advantage?

Increasing the length of a ramp does not change the mechanical advantage, as mechanical advantage depends on the ratio of the output force to the input force. The length of the ramp affects the distance over which the force is applied, but not the mechanical advantage itself.


Does Increasing the angle a ramp makes with the horizontal decreases the mechanical advantage?

No, increasing the angle of a ramp actually increases the mechanical advantage. Mechanical advantage is calculated as the length of the slope of the ramp divided by the vertical height it spans. As the angle of the ramp increases, the slope length increases, resulting in a higher mechanical advantage.


Which has a greater ideal mechanical advantage a ramp that is 12 m long and 2 m high or a ramp that is 6 m long and 2 m high?

Since the heights are the same, then the longer ramp.


The distance from the ground to the floor of a trailer is 20 inches. The length of the ramp is 50 inches. What is the mechanical advantage of this simple machine?

The mechanical advantage of a ramp can be calculated as the ratio of the length of the ramp to the vertical height it spans. In this case, the mechanical advantage is 50 inches (length of the ramp) divided by 20 inches (vertical height), which equals 2.5. So, the mechanical advantage of this ramp is 2.5.