No relation is there power factor is a unit less quantity.
When the frequency of Parallel RL Circuit Increases,XL increases which causes IL (current through inductor) decreases. Decrease in IL causes It (It=Il+Ir) to decrease,which means by relation IT=Vs/Zt ,the Zt (Total Impedance) Increases.
the natural frequency of a system involves a equation relating mass and stiffness i.e f=1/2pi root of k/m where f : frequency k :stiffness m:mass mass is nothing but density*volume from the relation density = mass/volume another relation may be from the basic force equation f=-k*x we know f=m*a substuting for f we get m*a=-k*x
Lock Range of a PLL is the range of frequencies centered at free running frequency of VCO, around which the PLL can remain in locked state. Capture Range of a PLL is the range of frequencies centered at free running frequency of VCO, around which the PLL can acquire lock-in from an unlocked state. The relation is Capture Range<=Lock Range
Not sure what type of modulation you are looking for, but there are two that can be manipulated, either individually or in conjunction:Frequency modulation index refers to the relation between the sine wave frequency (sine_freq) and the triangle (or saw-tooth) wave frequency (triang_freq).The frequency modulation index is equal to ((triang_freq)/(sine_freq)).Amplitude modulation index refers to the relation between the sine wave amplitude (sine_amp) and the triangle (or saw-tooth) wave amplitude (triang_amp).The amplitude modulation index is equal to ((sine_amp)/(triang_amp)).Varying the modulation index (normally by varying the frequency or amplitude of the triangle wave form) changes that respective modulation index.From personal experience, an appropriate amplitude modulation index for an SPWM waveform should be around 0.8(that is, if the triangle has an amplitude of 10, the sine would have an amplitude of 8). This index should never be equal to 1 (one); it should always be less. A.K.A.: the triangle-wave amplitude should always be greater than the sine-wave.On the other hand, a triangle-wave frequency much greaterthan the sine-wave frequency makes an SPWM that in turn generates a "cleaner" synthesized sine-wave in the H-bridge you are probably using. Try different freq. modulation indexes, but an index of at least 10 should be used (preferably somewhere around 100 if you want a good SPWM). That is, if the sine-wave frequency is 60 Hz, the triangle-wave frequency should be above 600, preferably 6,000 or more. Complications in the filter design in the "output" of the H-bridge will vary greatly when playing around with the frequency modulation index. That being said, keeping the amplitude modulation index at a static 0.8, and playing around with the triangle-wave frequency should be your best bet.
If the modulating system is AM (Amplitude Modulation) then the amplitude of the carrier wave changes with the amplitude of the modulation. On a specrum analyser that shows up as frequency sidebands. If the frequency of the carrier waves depends on the amplitude of the modulating signal that is called FM (frequency modulation). On a spectrum analyser that shows up as sidebands also.
Use the relation: speed = frequency x wavelengthUse the relation: speed = frequency x wavelengthUse the relation: speed = frequency x wavelengthUse the relation: speed = frequency x wavelength
dc does not have frequency only ac
the relation between frequency and time period is ''t=1/f''
Frequency = 1 / period
They have the same slope.
frequency = speed of light/wavelength
voltage and frequency both are different quantity.. don't mix it...
the lower the frequency the lower the pitch; higher pitch lower frequency
When the frequency of Parallel RL Circuit Increases,XL increases which causes IL (current through inductor) decreases. Decrease in IL causes It (It=Il+Ir) to decrease,which means by relation IT=Vs/Zt ,the Zt (Total Impedance) Increases.
yes!
frequency modulation
There is no such equation. The main reason is that there is no relationship between current and frequency.