icosikaitriagon
The name of a 23 sided shape is an icosikaidigon. I hate to tell you but this is not true the real answer is Icosikaitri.... for further more information and to check this look at http://mathforum.org/dr.math/faq/faq.polygon.names.HTML
The interior angles of a 23 sided polygon add up to 3780 degrees
The sum of the interior angles of any n-sided polygon is always (n - 2) x 180.Therefore, the sum of the angles of a 23-sided polygon is (23 - 2) x 180 = 3780.
flkgjsdjgsjglksjgewkjgjgikrsgk,rjgjsjkehjgkshgkshgkjshgkjsrhgjkshgjreshgk,ehgeshgjeshgkhghjhgehfehgjrshgpomkfyiohjfuyhdfbuytsdfgrteagfowieuot97438927 56897498tusiogyu8we t8iywi ulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgsugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgejkhsgisugulsdhgkusheihdieosuhdgej
a 23 sided polygon
The answer is Icositriskaidcayon.
A 23 sided polygon(shape) is called a icosikaitrigon, it can also be referred to as a 23-gon.
icosikaitriagon
The name of a 23 sided shape is an icosikaidigon. I hate to tell you but this is not true the real answer is Icosikaitri.... for further more information and to check this look at http://mathforum.org/dr.math/faq/faq.polygon.names.HTML
The formula to find the total amount of degrees contained by a shape is (n-2) * 180, where n is the number of sides. So, 25 - 2= 23, and this times (*) 180 is 4140, so the total of the internal angles of a 25-sided shape is 4140.
icosikaitrigon
Icosikaitrigon
tricosagon
Icositriskaidcayon (or Icositriddecagon)
It is: (23-2)*180 = 3780 degrees
Icositriskaidcayon (or Icositriddecagon)