To be congruent, the three angles of a triangle must be the same and the three sides must be the same. If triangles TRS and WUV meet those conditions, they are congruent.
Congruent - SSS
congruent - asa
congruent - SSSAnswer by Arteom, Friday December 10, 2010
not congruent
Might not be congruent
congruent - asa
Congruent - SSS
sssThere are five methods for proving the congruence of triangles. In SSS, you prove that all three sides of two triangles are congruent to each other. In SAS, if two sides of the triangles and the angle between them are congruent, then the triangles are congruent. In ASA, if two angles of the triangles and the side between them are congruent, then the triangles are congruent. In AAS, if two angles and one of the non-included sides of two triangles are congruent, then the triangles are congruent. In HL, which only applies to right triangles, if the hypotenuse and one leg of the two triangles are congruent, then the triangles are congruent.
Yes, triangles ABC and DEF are congruent if all corresponding sides and angles are equal. The congruence postulate that applies in this case could be the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates include Side-Side-Side (SSS) and Angle-Angle-Side (AAS), depending on the known measurements.
Yes, triangle SAM is congruent to triangle DEL if the corresponding sides and angles are equal. This can be established using the Side-Angle-Side (SAS) Congruence Postulate, which states that if two sides of one triangle are proportional to two sides of another triangle and the included angles are equal, then the triangles are congruent. Alternatively, if all three sides of both triangles are equal, the Side-Side-Side (SSS) Congruence Theorem can also be applied.
Yes, triangles ABC and DEF can be considered equal (congruent) if they meet specific criteria, such as having all corresponding sides and angles equal. The postulate that applies in this case is the Side-Side-Side (SSS) Congruence Postulate, which states that if three sides of one triangle are equal to three sides of another triangle, the triangles are congruent. Other applicable postulates include Side-Angle-Side (SAS) and Angle-Side-Angle (ASA), depending on the given information.
congruent - SSSAnswer by Arteom, Friday December 10, 2010
not congruent
Might not be congruent
Cannot be determined if it has 10 as a middle line between the two triangles.
not congruent
To determine if triangles PQR and XYZ are congruent, we need to compare their corresponding sides and angles. If all three pairs of sides are equal (SSS), or if two pairs of sides and the included angle are equal (SAS), or if two angles and the corresponding side between them are equal (ASA or AAS), then the triangles are congruent. Additionally, if the triangles are similar (AA), they may not be congruent unless their corresponding sides are also proportional. Thus, without specific measurements or angles provided, we cannot definitively conclude congruence.