Congruent - SSS
yes
cannot be determined
Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!
PQ ST
Congruent - SSS
yes
cannot be determined
Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!
Similar -AA (got it right on apex)
PQ ST
The answer will be AA which is short for (Angle Angle). Hope this helped.
Similar SAS-apex
"If two legs of one right triangle are congruent to the corresponding legs of another right triangle, then the two triangles are congruent."Example:Given:
Conventionally you use the symbol that looks like an "equals" sign but consists of three lines. It is the same symbol as is used for identities. ABC ≡ PQR
1/5
True, ABC is congruent to PQR by the transitive property.