Some can, but not all. For example, rhombi, rhomboids, oblongs, and isosceles triangles can tessellate; however, most irregular polygons cannot.
* * * * *
True, but an incomplete answer. All triangles and quadrilaterals, whether regular or irregular, will tessellate. No regular pentagon will tessellate but (as of 2016), there are 15 irregular pentagons which will tessellate. There are 3 convex hexagons, (regular and 2 irregular) which will tessellate. No polygon with 7 or more sides, even if it is regular, will tessellate.
Chat with our AI personalities
Shapes tessellate to fit around an interior angle. They also tessellate because they are regular polygons; non-regular polygons cannot tessellate. * * * * * Not correct. All triangles and quadrilaterals will tessellate, whether regular or irregular. Contrary to the above answer, a regular pentagon will not tessellate but there are 14 different irregular pentagons which will tessellate (the last was discovered in 2015). Three convex hexagons will do so as well. No polygon of 7 or more sides will tessellate - whether they are regular (contrary to the above answer) or irregular.
five-sided polygons cannot tessellate
Regular polygons: Equilateral triangles, squares, rectangles, rhombi, hexagons. Irregular polygons: Isosceles triangles and symmetric trapeziums (isosceles triangles with the odd angle cut off by a line parallel to the base) will do if they are alternating up and down. There are also many irregular shapes. MC Escher (see for example, http:/www.mcescher.com/Gallery/gallery-symmetry.htm) used repeated irregular shapes to tessellate. Although some of these have curved sides, they can be replaced by appropriate straight sides to produce polygons which will do the trick.
A regular octagon will not tessellate but an irregular one can.
For any polygon, there will be other shapes such that, together, they can tessellate.