Yes, since the set of real numbers can be expressed as a countable union of closed sets.In fact if we're talking about subsets of the real numbers (R), then by definition R is in all sigma-algebras of R including the Borel sigma-algebra, and so is a Borel set.
An example is given here: http://en.wikipedia.org/wiki/Non-Borel_set Any set that is easy to think of will be a Borel set, so an example of a non-Borel set will be complicated. Another approach: All Borel sets are Lebesgue measurable. The axiom of choice can be used to give an example of a non-measurable set, and this set will also be a non-Borel set. See http://en.wikipedia.org/wiki/Non-measurable_set = =
The set of Rational Numbers is a [proper] subset of Real Numbers.
What are equal sets?? A set is a grouping of numbers. Set P = {1,4,9} if set Q is equal it must contain exactly the same numbers.
Easily. Indeed, it might be empty. Consider the set of positive odd numbers, and the set of positive even numbers. Both are countably infinite, but their intersection is the empty set. For a non-empty intersection, consider the set of positive odd numbers, and 2, and the set of positive even numbers. Both are still countably infinite, but their intersection is {2}.
A singleton point is a closed set. The natural numbers can be written as a countable union of points. Thus, they form a Borel set.
Yes, since the set of real numbers can be expressed as a countable union of closed sets.In fact if we're talking about subsets of the real numbers (R), then by definition R is in all sigma-algebras of R including the Borel sigma-algebra, and so is a Borel set.
No, it is not.
The set of rational numbers includes the set of natural numbers but they are not the same. All natural numbers are rational, not all rational numbers are natural.
Yes - the set of integers is a subset of the set of rational numbers.
The Real numbers
The derived set of a set of rational numbers is the set of all limit points of the original set. In other words, it includes all real numbers that can be approached arbitrarily closely by elements of the set. Since the rational numbers are dense in the real numbers, the derived set of a set of rational numbers is the set of all real numbers.
It is the rational numbers.
No. A real number is only one number whereas the set of rational numbers has infinitely many numbers. However, the set of real numbers does contain the set of rational numbers.
Both rational numbers and integers are subsets of the set of real numbers.
The set of rational numbers is the union of the set of fractional numbers and the set of whole numbers.
No; there are infinitely many rational numbers.