The ratio of the perimeters is equal to the scale factor. If rectangle #1 has sides L and W, then the perimeter is 2*L1 + 2*W1 = 2*(L1 + W1).
If rectangle # 2 is similar to #1 and sides are scaled by a factor S, so that L2 = S*L1 and W2 = S*W1, the perimeter of rectangle #2 is 2*(L2 + W2)= 2*(S*L1 + S*W1) = S*2*(L1 + W1) = S*(perimeter of rectangle #1).
Chat with our AI personalities
It is k times the perimeter of eh where k is the constant ratio of the sides of abcd to the corresponding sides of efgh.
4 x 4 and 6 x 3
I don't understand why there are so many questions about rectangles' perimeter. You just add the length and the width and double your answer....
7:3
56 (: When we say polygon abcd is similar to polygon afge, they already told you which are the lines that are similar. ab:af=bc:fg=cd:ge etc. Lines ad and af are not similar in length and therefore cannot be used to find perimeter of polygon abcd even though the perimeter of polygon afge is given.