answersLogoWhite

0


Best Answer

Assume there are no lines through a given point that is parallel to a given line or

assume that there are many lines through a given point that are parallel to a given line.

There exist a line l and a point P not on l such that either there is no line m

parallel to l through P or there are two distinct lines m and n parallel to l through P.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you negate the euclidean parallel postulate?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

Does the parallel postulate in Euclidean geometry work in spherical geometry?

No.


Are two lines that are parallel to the same line parallel to each other?

Yes they are. It is delineated in something called the parallel postulate, and the axiom is also called Euclid's fifth postulate. This is boilerplate Euclidean geometry, and a link can be found below if you'd like to review the particulars.


Why hilbert axiom of parallelism assert the existence of only at most one parallel line'?

There is a subtle distinction between Euclidean, Hilbert and Non-Euclidean planes. Euclidean planes are those that satisfy the 5 axioms, while Non-Euclidean planes do not satisfy the fifth postulate. This means that in Non-Euclidean planes, given a line and a point not on that line, then there are two (or more) lines that contain that point and are parallel to the original line. There are geometries where there must be exactly one line through that point and parallel to the original line and then there are also geometries where no such line contains that point and is parallel to the original line.Basically, the fifth postulate can be satisfied by multiple geometries.


What are the names of Non-Euclidean Geometries?

Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.


What is the difference between Euclidean Geometry and non-Euclidean Geometry?

In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.

Related questions

Does the parallel postulate in Euclidean geometry work in spherical geometry?

No.


What are the two kinds of geometry?

euclidean Geometry where the parallel line postulate exists. and the is also eliptic geometry where the parallel line postulate does not exist.


What was A postulate that was developed and accepted by greek mathematicians?

One postulate developed and accepted by Greek mathematicians was the Parallel Postulate, which stated that given a line and a point not on that line, there is exactly one line through the point that is parallel to the given line. This postulate was crucial in the development of Euclidean geometry. However, it was later discovered that this postulate is not actually necessary for generating consistent geometries, leading to the development of non-Euclidean geometries.


how to negate the hyperbolic parallel postulate?

The hyperbolic parallel postulate states that given a line L and a point P, not on the line, there are at least two distinct lines through P that do not intersect L.The negation is that given a line L and a point P, not on the line, there is at most one line through P that does not intersect L.The negation includes the case where there is exactly one such line - which is the Euclidean space.


What is the major premise that separates Euclidean geometry from other non-Euclidean geometries?

It is Euclid's fifth postulate which is better known as the parallel postulate. It appears in very many equivalent forms but basically it states that: given a line and a point that is not on that line, there is at most one line which passes through that point and which is parallel to the original line.


Are two lines that are parallel to the same line parallel to each other?

Yes they are. It is delineated in something called the parallel postulate, and the axiom is also called Euclid's fifth postulate. This is boilerplate Euclidean geometry, and a link can be found below if you'd like to review the particulars.


Why hilbert axiom of parallelism assert the existence of only at most one parallel line'?

There is a subtle distinction between Euclidean, Hilbert and Non-Euclidean planes. Euclidean planes are those that satisfy the 5 axioms, while Non-Euclidean planes do not satisfy the fifth postulate. This means that in Non-Euclidean planes, given a line and a point not on that line, then there are two (or more) lines that contain that point and are parallel to the original line. There are geometries where there must be exactly one line through that point and parallel to the original line and then there are also geometries where no such line contains that point and is parallel to the original line.Basically, the fifth postulate can be satisfied by multiple geometries.


What are the postulates that non-Euclidean geometry is based on?

Non-Euclidean geometries are based on the negation of his parallel postulate (his fifth postulate). The other Euclidean postulates remain.A rephrasing of Euclid's parallel postulate is as follows:For any given line â„“ and a point A, which is not on â„“, there is exactly one line through A that does not intersect â„“. (The other postulates confirm the existence of â„“ and A.)One set of alternative geometries (projective geometry, for example) is based on the postulate that there are no such lines. Another set of is based on the postulate of an infinite number of lines.


Is it true that the sum of three angles of any triangle is 180 in non euclidean geometry?

No. Non-Euclidean geometries usually start with the axiom that Euclid's parallel postulate is not true. This postulate can be shown to be equivalent to the statement that the internal angles of a traingle sum to 180 degrees. Thus, non-Euclidean geometries are based on the proposition that is equivalent to saying that the angles do not add up to 180 degrees.


What are the names of Non-Euclidean Geometries?

Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.


What is not a postulate euclidean geometry apex?

The axioms are not postulates.


What is Euclidean geometry mean in math?

Euclidean geometry is the traditional geometry: it is the geometry of a plane surface, as developed by Euclid. Among other things, it is based on Euclid's parallel postulate which said (in effect) that given a line and a point outside that line there could only be one line through that point that was parallel to the given line. It has since been discovered that both alternatives to that postulate - that there are many such lines possible and that there are none - give rise to consistent geometries. These are non-Euclidean geometries.