No.
Chat with our AI personalities
Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.
In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.
Yes they are. It is delineated in something called the parallel postulate, and the axiom is also called Euclid's fifth postulate. This is boilerplate Euclidean geometry, and a link can be found below if you'd like to review the particulars.
Euclidean Geometry is based on the premise that through any point there is only one line that can be drawn parallel to another line. It is based on the geometry of the Plane. There are basically two answers to your question: (i) Through any point there are NO lines that can be drawn parallel to a given line (e.g. the geometry on the Earth's surface, where a line is defined as a great circle. (Elliptic Geometry) (ii) Through any point, there is an INFINITE number of lines that can be drawn parallel of a given line. (I think this is referred to as Riemannian Geometry, but someone else needs to advise us on this) Both of these are fascinating topics to study.
In Euclidean geometry, parallel line are alwayscoplanar.