answersLogoWhite

0


Best Answer

There are several methods for solving quadratic equations, although some apply only to specific quadratic equations of specific forms. The methods include:

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How many methods are there for solving quadratic equations?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

How many ways are there to solve a quadratic equation?

There are so far 8 common methods to solve quadratic equations:GraphingFactoring FOIL methodCompleting the square.Using the quadratic formula (derived from algebraic manipulation of "completing the square" method).The Diagonal Sum Method. It quickly and directly gives the 2 real roots in the form of 2 fractions. In fact, it can be considered as a shortcut of the factoring method. It uses the Rule of Signs for Real Roots in its solving process. When a= 1, it can give the 2 real roots quickly without factoring. Example. Solve x^2 - 39x + 108 = 0. The Rule of Signs indicates the 2 real roots are both positive. Write the factor-sets of c = 108. They are: (1, 108), (2, 54), (3, 36)...Stop! This sum is 36 + 3 = 39 = -b. The 2 real roots are 3 and 36. No needs for factoring! When a is not one, this new method selects all probable root-pairs, in the form of 2 fractions. Then it applies a very simple formula to see which root-pair is the answer. Usually, it requires less than 3 trials. If this new method fails, then this given quadratic equation can not be factored, and consequently the quadratic formula must be used. Please see book titled:"New methods for solving quadratic equations and inequalities" (Amazon e-book 2010).The Bluma MethodThe factoring AC Method (Youtube). This method is considerably improved by a "new and improved AC Method", recently introduced on Google or Yahoo Search.The new Transforming Method, recently introduced, that is may be the best and fastest method to solve quadratic equations. Its strong points are: simple, fast, systematic, no guessing, no factoring by grouping, and no solving the binomials. To know this new method, read the articles titled:"Solving quadratic equations by the new Transforming Method" on Google or Yahoo Search.BEST METHODS TO SOLVE QUADRATIC EQUATIONS. A. When the equation can't be factored, the best choice would be the quadratic formula. How to know if the equation can't be factored? There are 2 ways:1. Start solving by the new Transforming Method in composing factor pairs of a*c (or c). If you can't find the pair whose sum equals to (-b), or b, then the equation can't be factored.2. Calculate the Discriminant D = b^2 - 4ac. If D isn't a perfect square, then the equation can't be factored.B. When the equation can be factored, the new Transforming Method would be the best choice.


How many real solutions does a quadratic equation have if its discriminant is negative?

The quadratic has no real solutions.


How many roots does a quadratic equation?

2 roots


How many sides does a polygon have if it has 902 diagonals?

Let n be the number of sides: 1/2*(n2-3n) = diagonals 1/2*(n2-3n) = 902 Multiply both sides by 2 and form a quadratic equation: n2-3n-1804 = 0 Solving the above by means of the quadratic equation formula gives a positive value for n as 44 Therefore the polygon has 44 sides


What limitations do mathematical models have as problem solving tools?

There are many limitations that mathematical models have as problem solving tools. There is always a margin of error for example.

Related questions

How many existing methods are there in solving quadratic equations?

There are 5 existing methods in solving quadratic equations. For the first 4 methods (quadratic formula, factoring, graphing, completing the square) you can easily find them in algebra books. I would like to explain here the new one, the Diagonal Sum Method, recently presented in book titled:"New methods for solving quadratic equations and inequalities" (Trafford 2009). It directly gives the 2 roots in the form of 2 fractions, without having to factor the equation. The innovative concept of the method is finding 2 fractions knowing their Sum (-b/a) and their Product (c/a). It is very fast, convenient and is applicable whenever the given quadratic equation is factorable. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if this new method fails to find the answer, then we can conclude that the equation can not be factored, and consequently, the quadratic formula must be used. This new method can replace the trial-and-error factoring method since it is faster, more convenient, with fewer permutations and fewer trials.


How are quadratic equations used in the real world?

There are many ways quadratic equations are used in the real world. These equations are used to calculate area, speed and profit


What is the reason for quadratic equations?

Many situation can be described by quadratic equations. For example, the height of an object when dropped or shot up in the air.


Most quadratic equations have how many solutions?

2


What are two algebraic methods for solving quadratic equations?

Finally, there are two methods to use, depending on if the given quadratic equation can be factored or not. 1.- The first one is the new Diagonal Sum Method, recently presented in book titled: "New methods for solving quadratic equations" (Trafford 2009). This method directly gives the two roots in the form of two fractions, without having to factor it. The innovative concept of this new method is finding 2 fractions knowing their product (c/a) and their sum (-b/a). This new method is applicable to any quadratic equation that can be factored. It can replace the existing trial-and-error factoring method since this last one contains too many more permutations. In general, it is hard to tell in advance if a given quadratic equation can be factored. However, if the new method fails to get the answers, then you can positively conclude that this equation can not be factored. Consequently, the quadratic formula must be used in solving. We advise students to always try to solve the given equation by the new method first. If the student gets conversant with this method, it usually take less than 2 trials to get answers. 2. the second one uses the quadratic formula that students can find in any algebra book. This formula must be used for all quadratic equations that can not be factored.


What is the quadratic formula for?

The quadratic formula is used to solve the quadratic equation. Many equations in which the variable is squared can be written as a quadratic equation, and then solved with the quadratic formula.


What does creating quadratic equations have to do with Astronomy?

Quadratic equations appear in many situations in science; one example in astronomy is the force of gravitation, which is inversely proportional to the square of the distance.


Are there equations that are neither linear nor quadratic?

There are many equations that are neither linear nor quadratic. A simple example is a cubic equation, such as y = x3, or a logarithmic equation, such as y = ln(x).


What are 3 methods to solving a system of linear equations?

u can use gauss jorden or gauss elimination method for solving linear equation u also use simple subtraction method for small linear equation also.. after that also there are many methods are available but above are most used


What is the special cases of quadratic equation?

The standard form of a quadratic equation is: ax^2 + bx + c = 0. Depending on the values of the constants (a, b, and c), a quadratic equation may have 2 real roots, one double roots, or no real roots.There are many "special cases" of quadratic equations.1. When a = 1, the equation is in the form: x^2 + bx + c = 0. Solving it becomes solving a popular puzzle: find 2 numbers knowing their sum (-b) and their product (c). If you use the new Diagonal Sum Method (Amazon e-book 2010), solving is fast and simple.Example: Solve x^2 + 33x - 108 = 0.Solution. Roots have opposite signs. Write factor pairs of c = -108. They are: (-1, 108),(-2, 54),(-3, 36)...This sum is -3 + 36 = 33 = -b. The 2 real roots are -3 and 36. There is no needs for factoring.2. Tips for solving 2 special cases of quadratic equations.a. When a + b + c = 0, one real root is (1) and the other is (c/a).Example: the equation 5x^2 - 7x + 2 = 0 has 2 real roots: 1 and 2/5b. When a - b + c = 0, one real roots is (-1) and the other is (-c/a)Example: the equation 6x^2 - 3x - 9 = 0 has 2 real roots: (-1) and (9/6).3. Quadratic equations that can be factored.The standard form of a quadratic equation is ax^2 + bx + c = 0. When the Discriminant D = b^2 - 4ac is a perfect square, this equation can be factored into 2 binomials in x: (mx + n)(px + q)= 0. Solving the quadratic equation results in solving these 2 binomials for x. Students should master how to use this factoring method instead of boringly using the quadratic formula.When a given quadratic equation can be factored, there are 2 best solving methods to choose:a. The "factoring ac method" (You Tube) that determines the values of the constants m, n, p, and q of the 2 above mentioned binomials in x.b. The Diagonal Sum Method (Amazon ebook 2010) that directly obtains the 2 real roots without factoring. It is also considered as "The c/a method", or the shortcut of the factoring method. See the article titled" Solving quadratic equations by the Diagonal Sum Method" on this website.4. Quadratic equations that have 2 roots in the form of 2 complex numbers.When the Discriminant D = b^2 - 4ac < 0, there are 2 roots in the form of 2 complex numbers.5. Some special forms of quadratic equations:- quadratic equations with parameters: x^2 + mx - 7 + 0 (m is a parameter)- bi-quadratic equations: x^4 - 5x^2 + 4 = 0- equations with rational expression: (ax + b)/(cx + d) = (ex + f)- equations with radical expressions.


Why are Quadratic equations which are expressed in the form of ax2 plus bx plus c 0 where a does not equal 0 may have how many solutions?

Why are Quadratic equations, which are expressed in the form of ax2 + bx + c = 0, where a does not equal 0,


What are the pros and cons of the quadratic equation?

Pros: There are many real life situations in which the relationship between two variables is quadratic rather than linear. So to solve these situations quadratic equations are necessary. There is a simple equation to solve any quadratic equation. Cons: Pupils who are still studying basic mathematics will not be told how to solve quadratic equations in some circumstances - when the solutions lie in the Complex field.