false
If two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is the transversal postulate. So the answer is the lines would be parallel. This means that the statement is true.
A transversal is simply any line that passes through two or more coplanar lines each at different points. So picture, if you will, two lines that are clearly not parallel. I can easily construct a transversal that passes through them. HOWEVER, if two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is called the transversal postulate. If the corresponding angles are congruent, than the lines are parallel. This is the converse of the first postulate. So, the answer to your question is NO, unless the corresponding angles are congruent.
true
The corresponding and alternate angles
false
true
If two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is the transversal postulate. So the answer is the lines would be parallel. This means that the statement is true.
false
false
false
Show that corresponding angles are congruent?
Sure. Just as long as the transversal is perpendicular to the parallel lines.
A transversal is a line that intersects two or more other lines. If the corresponding angles are congruent then the two lines being intersected are parallel and vice verso.
A transversal is simply any line that passes through two or more coplanar lines each at different points. So picture, if you will, two lines that are clearly not parallel. I can easily construct a transversal that passes through them. HOWEVER, if two parallel lines are intersected by a transversal, then the corresponding angles are congruent. This is called the transversal postulate. If the corresponding angles are congruent, than the lines are parallel. This is the converse of the first postulate. So, the answer to your question is NO, unless the corresponding angles are congruent.
true
No. Angles are not congruent. (Triangles may be congruent.)