(x,y)-> (-y,x)
Clockwise means turning to your right, counterclockwise is to the left.
90 degrees
It is (-1, 6).
plz awnser this
90
Yes, a 270-degree clockwise rotation is the same as a 90-degree counterclockwise rotation. When you rotate an object 270 degrees clockwise, you effectively move it 90 degrees in the opposite direction, which is counterclockwise. Both rotations will result in the same final orientation of the object.
The answer will depend on whether the rotation is clockwise or counterclockwise.
A counterclockwise rotation of 270 degrees about the origin is equivalent to a clockwise rotation of 90 degrees. To apply this transformation to a point (x, y), you can use the rule: (x, y) transforms to (y, -x). This means that the x-coordinate becomes the y-coordinate, and the y-coordinate becomes the negative of the x-coordinate.
The answer will depend on whether the rotation is clockwise or counterclockwise.
1/4 of 360 degrees = 90 degrees which is a right angle
(-1, -4) rotated 90 degrees anticlockwise
To find the image of the point (35) after a rotation of -270 degrees, we first convert the angle to a positive equivalent by adding 360 degrees, resulting in a rotation of 90 degrees. Rotating the point (35) about the origin by 90 degrees counterclockwise transforms it to (-5, 3). Therefore, the image of the point (35) after the rotation is (-5, 3).
A rotation of 90 degrees counterclockwise is a transformation that turns a point or shape around a fixed point (usually the origin in a coordinate plane) by a quarter turn in the opposite direction of the clock's hands. For a point with coordinates (x, y), this rotation results in new coordinates (-y, x). This type of rotation is commonly used in geometry and computer graphics to manipulate shapes and objects.
Rotating a triangle 90 degrees counterclockwise would involve taking an upright triangle and laying is toward the left on its back. Changing position through rotation can cause a better visualization for some problem solving.
Assume we want to find the ordered pair after 90° counterclockwise rotation. From (x,y), we have (-y,x). If we want to find the ordered pair after 90° clockwise rotation, then from (x,y) we have (y, -x)
To rotate a figure 270 degrees counterclockwise about the origin, you can achieve this by rotating it 90 degrees clockwise, as 270 degrees counterclockwise is equivalent to 90 degrees clockwise. For each point (x, y) of the figure, the new coordinates after the rotation will be (y, -x). This transformation effectively shifts the figure to its new orientation while maintaining its shape and size.
An equivalent transformation to rotating a figure 90 degrees counterclockwise can be achieved by reflecting the figure across the line (y = x) and then reflecting it across the x-axis. This combination of reflections results in the same final orientation as the 90-degree counterclockwise rotation.