n-1
The term "cyclic graph" is not well-defined. If you mean a graph that is not acyclic, then the answer is 3. That would be the union of a complete graph on 3 vertices and any number of isolated vertices. If you mean a graph that is (isomorphic to) a cycle, then the answer is n. If you are really asking the maximum number of edges, then that would be the triangle numbers such as n (n-1) /2.
Three of them in the form of a triangle.
The number of sides and vertices are the same
In a prism, the number of faces, vertices, and edges are related by the formula F + V - E = 2, known as Euler's formula. For a prism, which has two parallel and congruent faces connected by rectangular faces, the number of faces (F) is equal to the sum of the number of rectangular faces and the two congruent bases. The number of vertices (V) is equal to the number of corners where edges meet, and the number of edges (E) is equal to the sum of the edges around the bases and the edges connecting the corresponding vertices of the bases.
No, prisms and pyramids do not have the same number of vertices. A prism has two identical polygonal bases connected by rectangular faces, so it has 2 more vertices than the number of sides in the base polygon. A pyramid has a polygonal base and triangular faces connecting the base to a single vertex, so it has 1 more vertex than the number of sides in the base polygon.
The term "cyclic graph" is not well-defined. If you mean a graph that is not acyclic, then the answer is 3. That would be the union of a complete graph on 3 vertices and any number of isolated vertices. If you mean a graph that is (isomorphic to) a cycle, then the answer is n. If you are really asking the maximum number of edges, then that would be the triangle numbers such as n (n-1) /2.
n-1 (o-o-o-o-o)
Every prism has vertices. They have an even number of vertices, with a minimum of 6 and no maximum.
Three of them in the form of a triangle.
Yes, a prism has an even number of vertices. A prism is a three-dimensional shape with two parallel and congruent polygonal bases connected by rectangular or parallelogram faces. The number of vertices in a prism is equal to the number of vertices in its bases plus the number of vertices in the lateral faces. Since each base has an equal number of vertices, and the lateral faces have an even number of vertices, the total number of vertices in a prism is always even.
-3
9 (two less than the number of vertices in the polygon).
There is no answer to the question as it appears. Faces + Vertices = Edges + 2 (The Euler characteristic of simply connected polyhedra).
There is not a specific formula fro vertices and edges. The Euler characteristic links the number of vertices, edges AND faces as follows: E + 2 = V + F for a simply connected polyhedron.
There can be no simply connected polyhedron with the specified number of faces, vertices and edges. The Euler characteristic requires that F + V = E + 2 where F = number of faces V = number of vertices E = number of edges This requirement is clearly not satisfied.
The vertex cover greedy algorithm helps in selecting the minimum number of vertices in a graph to cover all edges. It works by choosing vertices that cover the most uncovered edges at each step, leading to an efficient way to find a minimum vertex cover.
There is no limit to the number of vertices that a solid can have.There is no limit to the number of vertices that a solid can have.There is no limit to the number of vertices that a solid can have.There is no limit to the number of vertices that a solid can have.