I am guessing you are interested in triangles. Here are two false triangle congruence theorem conjectures.
1, If the angles of one triangle are equal respectively to the angles of another triangle, the triangles are congruent. ( abbreviated AAA).
2. If two sides and one angle of a triangle are equal respectively the two sides and one angle of another triangle, the triangles are congruent. (abbreviated SSA)
Comment: Draw triangles with pairs of equal sides but in which the included angle between the equal sides is acute in one case and obtuse in the others.
They are theorems that specify the conditions that must be met for two triangles to be congruent.
The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
Reflecting
Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!
there are 4 types of congruence theorem-: ASA,SSS,RHS,SAS
the congruence theorems or postulates are: SAS AAS SSS ASA
They are theorems that specify the conditions that must be met for two triangles to be congruent.
LL , La , HL and Ha
The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.
HA, LA, HL, LL [APEX]
If the hypotenuse and a leg of two right triangles are the same measure, the triangles are congruent
Putting a question mark at the end of a few words does not make it a sensible question. Please try again.
HA AAS
LA AAS [APEX]
LA and SAS [APEX]
LA ASA AAS [APEX]