answersLogoWhite

0

I am guessing you are interested in triangles. Here are two false triangle congruence theorem conjectures.

1, If the angles of one triangle are equal respectively to the angles of another triangle, the triangles are congruent. ( abbreviated AAA).

2. If two sides and one angle of a triangle are equal respectively the two sides and one angle of another triangle, the triangles are congruent. (abbreviated SSA)

Comment: Draw triangles with pairs of equal sides but in which the included angle between the equal sides is acute in one case and obtuse in the others.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran

Add your answer:

Earn +20 pts
Q: What are not congruence theorems?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

What are the congruence theorems or postulates?

They are theorems that specify the conditions that must be met for two triangles to be congruent.


What are the 2 triangle congruence theorems?

The two triangle congruence theorems are the AAS(Angle-Angle-Side) and HL(Hypotenuse-Leg) congruence theorems. The AAS congruence theorem states that if two angles and a nonincluded side in one triangle are congruent to two angles and a nonincluded side in another triangle, the two triangles are congruent. In the HL congruence theorem, if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, the two triangles are congruent.


What are the four congruence theorems for a right triangle?

The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.


Which of the following is a congruence transformation?

Reflecting


How do you prove rhs congruence?

Here is the answer to your query. Consider two ∆ABC and ∆PQR. In these two triangles ∠B = ∠Q = 90�, AB = PQ and AC = PR. We can prove the R.H.S congruence rule i.e. to prove ∆ABC ≅ ∆PQR We need the help of SSS congruence rule. We have AB = PQ, and AC = PR So, to prove ∆ABC ≅ ∆PQR in SSS congruence rule we just need to show BC = QR Now, using Pythagoras theorems in ∆ABC and ∆PQR Now, in ∆ABC and ∆PQR AB = PQ, BC = QR, AC = PR ∴ ∆ABC ≅ ∆PQR [Using SSS congruence rule] So, we have AB = PQ, AC = PR, ∠B = ∠Q = 90� and we have proved ∆ABC ≅ ∆PQR. This is proof of R.H.S. congruence rule. Hope! This will help you. Cheers!!!