One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few
The 2 types of non-Euclidean geometries are hyperbolic geometry and ellptic geometry.
Geometry that is not on a plane, like spherical geometry
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.
There are two non-Euclidean geometries: hyperbolic geometry and ellptic geometry.
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few
The 2 types of non-Euclidean geometries are hyperbolic geometry and ellptic geometry.
nothing
Geometry that is not on a plane, like spherical geometry
true
true
Geometry that is not on a plane, like spherical geometry
Archimedes - Euclidean geometry Pierre Ossian Bonnet - differential geometry Brahmagupta - Euclidean geometry, cyclic quadrilaterals Raoul Bricard - descriptive geometry Henri Brocard - Brocard points.. Giovanni Ceva - Euclidean geometry Shiing-Shen Chern - differential geometry René Descartes - invented the methodology analytic geometry Joseph Diaz Gergonne - projective geometry; Gergonne point Girard Desargues - projective geometry; Desargues' theorem Eratosthenes - Euclidean geometry Euclid - Elements, Euclidean geometry Leonhard Euler - Euler's Law Katyayana - Euclidean geometry Nikolai Ivanovich Lobachevsky - non-Euclidean geometry Omar Khayyam - algebraic geometry, conic sections Blaise Pascal - projective geometry Pappus of Alexandria - Euclidean geometry, projective geometry Pythagoras - Euclidean geometry Bernhard Riemann - non-Euclidean geometry Giovanni Gerolamo Saccheri - non-Euclidean geometry Oswald Veblen - projective geometry, differential geometry