One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
both the geometry are not related to the modern geometry
In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few
The 2 types of non-Euclidean geometries are hyperbolic geometry and ellptic geometry.
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.
both the geometry are not related to the modern geometry
In Euclidean geometry parallel lines are always the same distance apart. In non-Euclidean geometry parallel lines are not what we think of a parallel. They curve away from or toward each other. Said another way, in Euclidean geometry parallel lines can never cross. In non-Euclidean geometry they can.
There are two non-Euclidean geometries: hyperbolic geometry and ellptic geometry.
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few
The 2 types of non-Euclidean geometries are hyperbolic geometry and ellptic geometry.
true
true
Geometry that is not on a plane, like spherical geometry
Archimedes - Euclidean geometry Pierre Ossian Bonnet - differential geometry Brahmagupta - Euclidean geometry, cyclic quadrilaterals Raoul Bricard - descriptive geometry Henri Brocard - Brocard points.. Giovanni Ceva - Euclidean geometry Shiing-Shen Chern - differential geometry René Descartes - invented the methodology analytic geometry Joseph Diaz Gergonne - projective geometry; Gergonne point Girard Desargues - projective geometry; Desargues' theorem Eratosthenes - Euclidean geometry Euclid - Elements, Euclidean geometry Leonhard Euler - Euler's Law Katyayana - Euclidean geometry Nikolai Ivanovich Lobachevsky - non-Euclidean geometry Omar Khayyam - algebraic geometry, conic sections Blaise Pascal - projective geometry Pappus of Alexandria - Euclidean geometry, projective geometry Pythagoras - Euclidean geometry Bernhard Riemann - non-Euclidean geometry Giovanni Gerolamo Saccheri - non-Euclidean geometry Oswald Veblen - projective geometry, differential geometry
Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.