Cos(30) = sqrt(3)/2
cos(30) = sqrt(3)/2 so cosine squared is 3/4.
Cos(angle) = adjacent / hypotenuse. Cos(a) = a/h Substitute Cos(X) = 5/13 = 0.384615... A = Cos^*-1( 0.384615 .... A = 67.38013505... degrees.
0.866
0.422618262
It is: cos^-1(12/13) = 22.61986495 degrees
The value of cos 30 degrees is (\frac{\sqrt{3}}{2}). This is a commonly used value in trigonometry, derived from the properties of a 30-60-90 triangle. In this triangle, the ratio of the adjacent side to the hypotenuse corresponds to the cosine of 30 degrees.
cos(30 deg) = sqrt(3)/2 = 0.8660 approx.
Cos(30) = sqrt(3)/2 = 0.866025403.... ( Which is irrational).
30 degrees explanation 2Cosx-radical 3=0 Then 2cosx=radical 3 and cos x=(radical 3)/2 Now remember that cos 300 is (radical 3)/2 from the 30/60/90 triangle. So the answer is 30 degrees.
The cosine of 15 degrees can be calculated using the cosine subtraction formula: (\cos(15^\circ) = \cos(45^\circ - 30^\circ)). This gives us (\cos(15^\circ) = \cos(45^\circ)\cos(30^\circ) + \sin(45^\circ)\sin(30^\circ). Substituting the known values, (\cos(45^\circ) = \frac{\sqrt{2}}{2}), (\cos(30^\circ) = \frac{\sqrt{3}}{2}), (\sin(45^\circ) = \frac{\sqrt{2}}{2}), and (\sin(30^\circ) = \frac{1}{2}), we find that (\cos(15^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4}).
510 ~ (510-360) ~ 150 Cos 510 = Cos 150 = - Cos 30 = - ( radical 3 ) / 2
cos(30 = 0.8660254038
cos(30) = sqrt(3)/2 so cosine squared is 3/4.
The value of cos 40 degrees is approximately 0.766.
The cosine of 15 degrees can be calculated using the cosine subtraction formula: ( \cos(15^\circ) = \cos(45^\circ - 30^\circ) ). This gives us ( \cos(15^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ ). Plugging in the known values, ( \cos 45^\circ = \frac{\sqrt{2}}{2} ), ( \cos 30^\circ = \frac{\sqrt{3}}{2} ), ( \sin 45^\circ = \frac{\sqrt{2}}{2} ), and ( \sin 30^\circ = \frac{1}{2} ), we find that ( \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} ).
Cos 43
It is: cos(0) = 1