answersLogoWhite

0


Best Answer

That is only one vector. Sum needs two (or more) elements (operands).

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the sum of Vector B with x component 2 and y component 18?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Formula to calculate magnitude of the resultant vector?

To calculate the magnitude of the resultant vector, you can use the Pythagorean theorem. Square the x-component of the vector, square the y-component of the vector, and sum them together. Finally, take the square root of the resulting sum. The formula is: |R| = sqrt((Rx^2) + (Ry^2)).


Is a scalar a component of a vector?

Answer: A vector is always the product of 2 scalars


How do you find sum of both vector?

Two methods can be used for vector addition. (1) Graphically. Place the vectors head-to-tail, without changing their direction or size. (2) Analytically, that is, mathematically. Add the x-component and the y-component separately. The z-component too, if the vectors are in three dimensions.


What is the energy of motion or the energy an object has as a result of its motion?

Kinetic Energy, which is: KE = 1/2mv^2 or the kinetic energy is equal to one half the sum of the mass and the square of the velocity Answer2: Energy is a quaternion quantity with a scalar/potential and a vector component. The vector component is mcV. Physics does not recognize vector energy. Kinetic energy is rightfully the vector energy mcV, not a scalar energy, 1/2 mv^2.


What is the energy of motion or energy an object has as a result of its motion?

Kinetic Energy, which is: KE = 1/2mv^2 or the kinetic energy is equal to one half the sum of the mass and the square of the velocity Answer2: Energy is a quaternion quantity with a scalar/potential and a vector component. The vector component is mcV. Physics does not recognize vector energy. Kinetic energy is rightfully the vector energy mcV, not a scalar energy, 1/2 mv^2.


In 2 dimensional kinematics can the x component of a vector be great than the vector itself?

No.


What is the magnitude of vector -2 0?

A vector, starting at the origin and going to point (-2,0):Since there is no y-component, the magnitude is the absolute value of the x componentmagnitude = 2magnitude of a vector = sqrt( X2 + Y2) = sqrt ((-2)2 + 02) = sqrt(4) = 2where X & Y are the x-component & y-component of the vector.


It is possible for a vector to be zero if a component of the vector is not zero?

No. The value of a vector is determined by the square root of the sum of its components squared. Value= Sqrt(x^2 + y^2 + z^2). The components of real vectors are real numbers and the square of a real number is a positive number. The sum of a positive and zeros is not zero but a positive. Vectors were created by William Rowan Hamilton in 1843 when he created Quaternions. Quaternions consist of a real number and three vector numbers. The vectors are designated by i, j, k where i^2=j^2=k^2=ijk= -1. The square of a vector is a negative one . This used to be called an imaginary number. The components of vectors are real numbers, like v=2i + 3j -5k, the value of v = sqrt(4 + 9 + 25)=sqrt(38). Complex numbers are a subset of quaternions involving one vector "i".


How resolution of vector is used in applying the component methods in adding vectors?

The related question has a nice detail of this. Each vector is resolved into component vectors. For 2-dimensions, it is an x-component and a y-component. Then the respective components are added. These added components make up the resultant vector.


What is the sum of 18 and 2?

20, is the sum of 18 and 2.


Can the magnitude of a vector be less than magnitudes both of components?

The magnitude of the sum of any two vectors can be anywhere between zero and the sum of their two magnitudes, depending on their magnitudes and the angle between them. When you say "components", you're simply describing a sum of two vectors that happen to be perpendicular to each other. In that case, the magnitude of their sum is Square root of [ (magnitude of one component)2 + (magnitude of the other component)2 ] It looks to me like that can't be less than the the magnitude of the greater component.


How do you find the vector of magnitude 2 in the direction of vector i plus 2j?

The magnitude of (i + 2j) is sqrt(5). The magnitude of your new vector is 2. If both vectors are in the same direction, then each component of one vector is in the same ratio to the corresponding component of the other one. The components of the known vector are 1 and 2, and its magnitude is sqrt(5). The magnitude of the new one is 2/sqrt(5) times the magnitude of the old one. So its x-component is 2/sqrt(5) times i, and its y-component is 2/sqrt(5) times 2j. The new vector is [ (2/sqrt(5))i + (4/sqrt(5))j ]. Since the components of both vectors are proportional, they're in the same direction.