answersLogoWhite

0


Best Answer

Every triangle has an incentre, circumcentre, orthocentre and centroid.

User Avatar

Wiki User

8y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What triangle has a incenter circumcenter orthocenter and centroid?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Geometry

The point of concurrency of the medians of a triangle?

the centroid. here are all the points of concurrency: perpendicular bisector- circumcenter altitudes- orthocenter angle bisector- incenter median- centroid hope that was helpful :)


What is the purpose of an orthocenter?

In short, the orthocenter really has no purpose. There are 4 points of Concurrency in Triangles: 1) The Centroid - the point of concurrency where the 3 medians of a triangle meet. This point is also the triangle's center of gravity. 2) The Circumcenter - the point of concurrency where the perpendicular bisectors of all three sides of the triangle meet. This point is the center of the triangle's circumscribed circle. 3) The Incenter - the point of concurrency where the angle bisectors of all three angles of the triangle meet. Like the circumcenter, the incenter is the center of the inscribed circle of a triangle. 4) The Orthocenter - the point of concurrency where the 3 altitudes of a triangle meet. Unlike the other three points of concurrency, the orthocenter is only there to show that altitudes are concurrent. Thus, bringing me back to the initial statement.


Which best describes the incenter of a triangle?

what is the circumcenter of a triangle


What are the properties of the circumcenter of a triangle?

The circumcenter is equidistant from each vertex of the triangle.The circumcenter is at the intersection of the perpendicular bisectors of the triangle's sides.The circumcenter of a right triangle falls on the side opposite the right angle.The incenter of a triangle is always inside it.The incenter is where all of the bisectors of the angles of the triangle meet.The incenter is equidistant from each side of the triangle


What are the properties of the circumcenter of a traingle?

The circumcenter is equidistant from each vertex of the triangle.The circumcenter is at the intersection of the perpendicular bisectors of the triangle's sides.The circumcenter of a right triangle falls on the side opposite the right angle.The incenter of a triangle is always inside it.The incenter is where all of the bisectors of the angles of the triangle meet.The incenter is equidistant from each side of the triangle

Related questions

What are the four points of concurrence in a triangle?

Circumcenter, incenter, orthocenter and centroid.


What are the special points in triangle?

The Orthocenter The Centroid The Circumcenter The Incenter >.> 'nuff said


Can the orthocenter incenter centroid and circumcenter of a triangle all meet at the same point?

Yes, but only in an equilateral triangle.


The point of concurrency of the medians of a triangle?

the centroid. here are all the points of concurrency: perpendicular bisector- circumcenter altitudes- orthocenter angle bisector- incenter median- centroid hope that was helpful :)


The lines containing the altitudes of a triangle are concurrent at this point?

The point where the altitudes of a triangle intersect is called the orthocenter. This point is concurrent, meaning the three altitudes intersect at this single point inside or outside the triangle. The orthocenter is different from the centroid, circumcenter, and incenter of a triangle.


What is the definition of point of concurrency?

A point of concurrency is a point where three or more lines, segments, or rays intersect or meet. Common points of concurrency in geometry include the centroid, circumcenter, incenter, and orthocenter of a triangle.


What is the purpose of an orthocenter?

In short, the orthocenter really has no purpose. There are 4 points of Concurrency in Triangles: 1) The Centroid - the point of concurrency where the 3 medians of a triangle meet. This point is also the triangle's center of gravity. 2) The Circumcenter - the point of concurrency where the perpendicular bisectors of all three sides of the triangle meet. This point is the center of the triangle's circumscribed circle. 3) The Incenter - the point of concurrency where the angle bisectors of all three angles of the triangle meet. Like the circumcenter, the incenter is the center of the inscribed circle of a triangle. 4) The Orthocenter - the point of concurrency where the 3 altitudes of a triangle meet. Unlike the other three points of concurrency, the orthocenter is only there to show that altitudes are concurrent. Thus, bringing me back to the initial statement.


What is the point of concurrency of an altitude of a triangle?

The point of concurrency of the altitudes in a triangle is the orthocenter, while the point of concurrency for the perpendicular bisectors is the centroid/circumcenter. Sorry if this is late! xD


Which best describes the incenter of a triangle?

what is the circumcenter of a triangle


What are the properties of the circumcenter of a triangle?

The circumcenter is equidistant from each vertex of the triangle.The circumcenter is at the intersection of the perpendicular bisectors of the triangle's sides.The circumcenter of a right triangle falls on the side opposite the right angle.The incenter of a triangle is always inside it.The incenter is where all of the bisectors of the angles of the triangle meet.The incenter is equidistant from each side of the triangle


What are the properties of the circumcenter of a traingle?

The circumcenter is equidistant from each vertex of the triangle.The circumcenter is at the intersection of the perpendicular bisectors of the triangle's sides.The circumcenter of a right triangle falls on the side opposite the right angle.The incenter of a triangle is always inside it.The incenter is where all of the bisectors of the angles of the triangle meet.The incenter is equidistant from each side of the triangle


Which center of a triangle is also the center of gravity of the triangle?

orthocenter* * * * *No it is not. It is the centroid - where the medians meet.The centroid.